Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach

Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach

Author: Percy Deift

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 273

ISBN-13: 0821826956

DOWNLOAD EBOOK

This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n times n matrices exhibit universal behavior as n > infinity? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems. Titles in this series are copublished with the Courant Institute of Mathematical Sciences at New York University.


Random Matrices and the Six-vertex Model

Random Matrices and the Six-vertex Model

Author: Pavel Bleher

Publisher:

Published: 2014

Total Pages: 224

ISBN-13: 9781470414429

DOWNLOAD EBOOK

This book provides a detailed description of the Riemann-Hilbert approach (RH approach) to the asymptotic analysis of both continuous and discrete orthogonal polynomials, and applications to random matrix models as well as to the six-vertex model. The RH approach was an important ingredient in the proofs of universality in unitary matrix models. This book gives an introduction to the unitary matrix models and discusses bulk and edge universality. The six-vertex model is an exactly solvable two-dimensional model in statistical physics, and thanks to the Izergin-Korepin formula for the model wit.


Random Matrices, Random Processes and Integrable Systems

Random Matrices, Random Processes and Integrable Systems

Author: John Harnad

Publisher: Springer Science & Business Media

Published: 2011-05-06

Total Pages: 536

ISBN-13: 1441995145

DOWNLOAD EBOOK

This book explores the remarkable connections between two domains that, a priori, seem unrelated: Random matrices (together with associated random processes) and integrable systems. The relations between random matrix models and the theory of classical integrable systems have long been studied. These appear mainly in the deformation theory, when parameters characterizing the measures or the domain of localization of the eigenvalues are varied. The resulting differential equations determining the partition function and correlation functions are, remarkably, of the same type as certain equations appearing in the theory of integrable systems. They may be analyzed effectively through methods based upon the Riemann-Hilbert problem of analytic function theory and by related approaches to the study of nonlinear asymptotics in the large N limit. Associated with studies of matrix models are certain stochastic processes, the "Dyson processes", and their continuum diffusion limits, which govern the spectrum in random matrix ensembles, and may also be studied by related methods. Random Matrices, Random Processes and Integrable Systems provides an in-depth examination of random matrices with applications over a vast variety of domains, including multivariate statistics, random growth models, and many others. Leaders in the field apply the theory of integrable systems to the solution of fundamental problems in random systems and processes using an interdisciplinary approach that sheds new light on a dynamic topic of current research.


Skew-orthogonal Polynomials and Random Matrix Theory

Skew-orthogonal Polynomials and Random Matrix Theory

Author: Saugata Ghosh

Publisher: American Mathematical Soc.

Published:

Total Pages: 138

ISBN-13: 0821869884

DOWNLOAD EBOOK

"Orthogonal polynomials satisfy a three-term recursion relation irrespective of the weight function with respect to which they are defined. This gives a simple formula for the kernel function, known in the literature as the Christoffel-Darboux sum. The availability of asymptotic results of orthogonal polynomials and the simple structure of the Christoffel-Darboux sum make the study of unitary ensembles of random matrices relatively straightforward. In this book, the author develops the theory of skew-orthogonal polynomials and obtains recursion relations which, unlike orthogonal polynomials, depend on weight functions. After deriving reduced expressions, called the generalized Christoffel-Darboux formulas (GCD), he obtains universal correlation functions and non-universal level densities for a wide class of random matrix ensembles using the GCD. The author also shows that once questions about higher order effects are considered (questions that are relevant in different branches of physics and mathematics) the use of the GCD promises to be efficient. Titles in this series are co-published with the Centre de Recherches Mathématiques."--Publisher's website.


Random Matrix Theory

Random Matrix Theory

Author: Percy Deift

Publisher: American Mathematical Soc.

Published: 2009-01-01

Total Pages: 236

ISBN-13: 0821883577

DOWNLOAD EBOOK

"This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derived." --Book Jacket.


Special Functions 2000: Current Perspective and Future Directions

Special Functions 2000: Current Perspective and Future Directions

Author: Joaquin Bustoz

Publisher: Springer Science & Business Media

Published: 2001

Total Pages: 548

ISBN-13: 9780792371199

DOWNLOAD EBOOK

The Advanced Study Institute brought together researchers in the main areas of special functions and applications to present recent developments in the theory, review the accomplishments of past decades, and chart directions for future research. Some of the topics covered are orthogonal polynomials and special functions in one and several variables, asymptotic, continued fractions, applications to number theory, combinatorics and mathematical physics, integrable systems, harmonic analysis and quantum groups, Painleve classification.


Orthogonal Polynomials, Equilibrium Measures and Quadrature Domains Associated with Random Matrix Models

Orthogonal Polynomials, Equilibrium Measures and Quadrature Domains Associated with Random Matrix Models

Author: Ferenc Balogh

Publisher:

Published: 2010

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Motivated by asymptotic questions related to the spectral theory of complex random matrices, this work focuses on the asymptotic analysis of orthogonal polynomials with respect to quasi-harmonic potentials in the complex plane. The ultimate goal is to develop new techniques to obtain strong asymptotics (asymptotic expansions valid uniformly on compact subsets) for planar orthogonal polynomials and use these results to understand the limiting behavior of spectral statistics of matrix models as their size goes to infinity. For orthogonal polynomials on the real line the powerful Riemann-Hilbert approach is the main analytic tool to derive asymptotics for the eigenvalue correlations in Hermitian matrix models. As yet, no such method is available to obtain asymptotic information about planar orthogonal polynomials, but some steps in this direction have been taken. The results of this thesis concern the connection between the asymptotic behavior of orthogonal polynomials and the corresponding equilibrium measure. It is conjectured that this connection is established via a quadrature identity: under certain conditions the weak-star limit of the normalized zero counting measure of the orthogonal polynomials is a quadrature measure for the support of the equilibrium measure of the corresponding two-dimensional electrostatic variational problem of the underlying potential. Several results are presented on equilibrium measures, quadrature domains, orthogonal polynomials and their relation to matrix models. In particular, complete strong asymptotics are obtained for the simplest nontrivial quasi-harmonic potential by a contour integral reduction method and the Riemann-Hilbert approach, which confirms the above conjecture for this special case.


Combinatorics and Random Matrix Theory

Combinatorics and Random Matrix Theory

Author: Jinho Baik

Publisher: American Mathematical Soc.

Published: 2016-06-22

Total Pages: 478

ISBN-13: 0821848410

DOWNLOAD EBOOK

Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.


A Dynamical Approach to Random Matrix Theory

A Dynamical Approach to Random Matrix Theory

Author: László Erdős

Publisher: American Mathematical Soc.

Published: 2017-08-30

Total Pages: 239

ISBN-13: 1470436485

DOWNLOAD EBOOK

A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.


Asymptotics for Orthogonal Polynomials

Asymptotics for Orthogonal Polynomials

Author: Walter Van Assche

Publisher: Springer

Published: 2006-11-14

Total Pages: 207

ISBN-13: 354047711X

DOWNLOAD EBOOK

Recently there has been a great deal of interest in the theory of orthogonal polynomials. The number of books treating the subject, however, is limited. This monograph brings together some results involving the asymptotic behaviour of orthogonal polynomials when the degree tends to infinity, assuming only a basic knowledge of real and complex analysis. An extensive treatment, starting with special knowledge of the orthogonality measure, is given for orthogonal polynomials on a compact set and on an unbounded set. Another possible approach is to start from properties of the coefficients in the three-term recurrence relation for orthogonal polynomials. This is done using the methods of (discrete) scattering theory. A new method, based on limit theorems in probability theory, to obtain asymptotic formulas for some polynomials is also given. Various consequences of all the results are described and applications are given ranging from random matrices and birth-death processes to discrete Schrödinger operators, illustrating the close interaction with different branches of applied mathematics.