Supported by the expert-level advice of pioneering researchers, Orthogonal Frequency Division Multiple Access Fundamentals and Applications provides a comprehensive and accessible introduction to the foundations and applications of one of the most promising access technologies for current and future wireless networks. It includes authoritative cove
This book presents comprehensive coverage of current and emerging multiple access, random access, and waveform design techniques for 5G wireless networks and beyond. A definitive reference for researchers in these fields, the book describes recent research from academia, industry, and standardization bodies. The book is an all-encompassing treatment of these areas addressing orthogonal multiple access and waveform design, non-orthogonal multiple access (NOMA) via power, code, and other domains, and orthogonal, non-orthogonal, and grant-free random access. The book builds its foundations on state of the art research papers, measurements, and experimental results from a variety of sources.
- The first book on optical OFDM by the leading pioneers in the field - The only book to cover error correction codes for optical OFDM - Gives applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implemented - Contains introductions to signal processing for optical engineers and optical communication fundamentals for wireless engineers This book gives a coherent and comprehensive introduction to the fundamentals of OFDM signal processing, with a distinctive focus on its broad range of applications. It evaluates the architecture, design and performance of a number of OFDM variations, discusses coded OFDM, and gives a detailed study of error correction codes for access networks, 100 Gb/s Ethernet and future optical networks. The emerging applications of optical OFDM, including single-mode fiber transmission, multimode fiber transmission, free space optical systems, and optical access networks are examined, with particular attention paid to passive optical networks, radio-over-fiber, WiMAX and UWB communications. Written by two of the leading contributors to the field, this book will be a unique reference for optical communications engineers and scientists. Students, technical managers and telecom executives seeking to understand this new technology for future-generation optical networks will find the book invaluable. William Shieh is an associate professor and reader in the electrical and electronic engineering department, The University of Melbourne, Australia. He received his M.S. degree in electrical engineering and Ph.D. degree in physics both from University of Southern California. Ivan Djordjevic is an Assistant Professor of Electrical and Computer Engineering at the University of Arizona, Tucson, where he directs the Optical Communications Systems Laboratory (OCSL). His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. "This wonderful book is the first one to address the rapidly emerging optical OFDM field. Written by two leading researchers in the field, the book is structured to comprehensively cover any optical OFDM aspect one could possibly think of, from the most fundamental to the most specialized. The book adopts a coherent line of presentation, while striking a thoughtful balance between the various topics, gradually developing the optical-physics and communication-theoretic concepts required for deep comprehension of the topic, eventually treating the multiple optical OFDM methods, variations and applications. In my view this book will remain relevant for many years to come, and will be increasingly accessed by graduate students, accomplished researchers as well as telecommunication engineers and managers keen to attain a perspective on the emerging role of OFDM in the evolution of photonic networks." -- Prof. Moshe Nazarathy, EE Dept., Technion, Israel Institute of Technology - The first book on optical OFDM by the leading pioneers in the field - The only book to cover error correction codes for optical OFDM - Applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implemented - An introduction to signal processing for optical communications - An introduction to optical communication fundamentals for the wireless engineer
This textbook takes a unified view of the fundamentals of wireless communication and explains cutting-edge concepts in a simple and intuitive way. An abundant supply of exercises make it ideal for graduate courses in electrical and computer engineering and it will also be of great interest to practising engineers.
Code-division multiple access (CDMA) technology has been widely adopted in cell phones. Its astonishing success has led many to evaluate the promise of this technology for optical networks. This field has come to be known as Optical CDMA (OCDMA). Surveying the field from its infancy to the current state, Optical Code Division Multiple Access: Fundamentals and Applications offers the first comprehensive treatment of OCDMA from technology to systems. The book opens with a historical perspective, demonstrating the growth and development of the technologies that would eventually evolve into today's optical networks. Building on this background, the discussion moves to coherent and incoherent optical CDMA coding techniques and performance analysis of these codes in fiber optic transmission systems. Individual chapters provide detailed examinations of fiber Bragg grating (FBG) technology including theory, design, and applications; coherent OCDMA systems; and incoherent OCDMA systems. Turning to implementation, the book includes hybrid multiplexing techniques along with system examples and conversion techniques to connect networks that use different multiplexing platforms, state-of-the-art integration technologies, OCDMA network security issues, and OCDMA network architectures and applications, including a look at possible future directions. Featuring contributions from a team of international experts led by a pioneer in optical technology, Optical Code Division Multiple Access: Fundamentals and Applications places the concepts, techniques, and technologies in clear focus for anyone working to build next-generation optical networks.
Frequency spectrum is a limited and valuable resource for wireless communications. A good example can be observed among network operators in Europe for the prices to pay for UMTS-frequency bands. Therefore, the first goal when designing future wireless communication systems (e.g. 4G - fourth generation) has to be the increase in spectral efficiency. The development in digital communications in the past years has enabled efficient modulation and coding techniques for robust and spectral efficient data, speech, audio and video transmission. These are the multi-carrier modulation (e.g. OFDM) and the spread spectrum technique (e.g. DS-CDMA), where OFDM was chosen for broadcast applications (DVB, DAB) as well as for broadband wireless indoor standards (ETSI HIPERLAN-II, IEEE-802.11) and the DS-CDMA was selected in mobile communications (IS-95, third generation mobile radio systems world wide, UMTS/IMT 2000). Since 1993 various combinations of multi-carrier (MC) modulation and the spread spectrum (SS) technique have been introduced and the field of MC-SS communications has become an independent and important research topic with increasing activities. New application fields have been proposed such as high rate cellular mobile, high rate wireless indoor and LMDS. It has been shown that MC-SS offers the high spectral efficiency, robustness and flexibility that is required for the next generation systems. Meanwhile, different alternative hybrid schemes such as OFDM/OFDMA, MC-TDMA, etc. have been deeply analysed and adopted in different international standards (ETSI-BRAN, IEEE-802 & MMAC). Multi-Carrier & Spread-Spectrum: Analysis of Hybrid Air Interfaces draws together all of the above mentioned hybrid schemes therefore providing a greatly needed resource for system engineers, telecommunication designers and researchers in order to enable them to develop, build and deploy several schemes based on MC-transmission for the next generation systems (which will be an integration of broadband multimedia services covering both 4G mobile and fixed wireless systems). * Offers a complete treatment of multi-carrier, spread-spectrum (SS) and time division multiplexing (TDM) techniques * Provides an in-depth insight into hybrid multiple access techniques based on multi-carrier (MC) transmission * Presents numerous hybrid multiple access and air interface architectures including OFDM/CDMA, MC-CDMA, MC-DS-CDMA and MT-CDMA * Covers new techniques such as space-time coding and software radio Telecommunications engineers, hardware & software system designers and researchers as well as students, lecturers and technicians will all find this an invaluable addition to their bookshelf.
Multi-carrier modulation, in particular orthogonal frequency division multiplexing (OFDM), has been successfully applied to a wide variety of digital communications applications for several years. Although OFDM has been chosen as the physical layer standard for a diversity of important systems, the theory, algorithms, and implementation techniques remain subjects of current interest. This book is intended to be a concise summary of the present state of the art of the theory and practice of OFDM technology. This book offers a unified presentation of OFDM theory and high speed and wireless applications. In particular, ADSL, wireless LAN, and digital broadcasting technologies are explained. It is hoped that this book will prove valuable both to developers of such systems, and to researchers and graduate students involved in analysis of digital communications, and will remain a valuable summary of the technology, providing an understanding of new advances as well as the present core technology.
The Definitive Guide to LTE Technology Long-Term Evolution (LTE) is the next step in the GSM evolutionary path beyond 3G technology, and it is strongly positioned to be the dominant global standard for 4G cellular networks. LTE also represents the first generation of cellular networks to be based on a flat IP architecture and is designed to seamlessly support a variety of different services, such as broadband data, voice, and multicast video. Its design incorporates many of the key innovations of digital communication, such as MIMO (multiple input multiple output) and OFDMA (orthogonal frequency division multiple access), that mandate new skills to plan, build, and deploy an LTE network. In Fundamentals of LTE, four leading experts from academia and industry explain the technical foundations of LTE in a tutorial style—providing a comprehensive overview of the standards. Following the same approach that made their recent Fundamentals of WiMAX successful, the authors offer a complete framework for understanding and evaluating LTE. Topics include Cellular wireless history and evolution: Technical advances, market drivers, and foundational networking and communications technologies Multicarrier modulation theory and practice: OFDM system design, peak-to-average power ratios, and SC-FDE solutions Frequency Domain Multiple Access: OFDMA downlinks, SC-FDMA uplinks, resource allocation, and LTE-specific implementation Multiple antenna techniques and tradeoffs: spatial diversity, interference cancellation, spatial multiplexing, and multiuser/networked MIMO LTE standard overview: air interface protocol, channel structure, and physical layers Downlink and uplink transport channel processing: channel encoding, modulation mapping, Hybrid ARQ, multi-antenna processing, and more Physical/MAC layer procedures and scheduling: channel-aware scheduling, closed/open-loop multi-antenna processing, and more Packet flow, radio resource, and mobility management: RLC, PDCP, RRM, and LTE radio access network mobility/handoff procedures
Mobile and wireless communications applications have a clear impact on improving the humanity wellbeing. From cell phones to wireless internet to home and office devices, most of the applications are converted from wired into wireless communication. Smart and advanced wireless communication environments represent the future technology and evolutionary development step in homes, hospitals, industrial, vehicular and transportation systems. A very appealing research area in these environments has been the wireless ad hoc, sensor and mesh networks. These networks rely on ultra low powered processing nodes that sense surrounding environment temperature, pressure, humidity, motion or chemical hazards, etc. Moreover, the radio frequency (RF) transceiver nodes of such networks require the design of transmitter and receiver equipped with high performance building blocks including antennas, power and low noise amplifiers, mixers and voltage controlled oscillators. Nowadays, the researchers are facing several challenges to design such building blocks while complying with ultra low power consumption, small area and high performance constraints. CMOS technology represents an excellent candidate to facilitate the integration of the whole transceiver on a single chip. However, several challenges have to be tackled while designing and using nanoscale CMOS technologies and require innovative idea from researchers and circuits designers. While major researchers and applications have been focusing on RF wireless communication, optical wireless communication based system has started to draw some attention from researchers for a terrestrial system as well as for aerial and satellite terminals. This renewed interested in optical wireless communications is driven by several advantages such as no licensing requirements policy, no RF radiation hazards, and no need to dig up roads besides its large bandwidth and low power consumption. This second part of the book, Mobile and Wireless Communications: Key Technologies and Future Applications, covers the recent development in ad hoc and sensor networks, the implementation of state of the art of wireless transceivers building blocks and recent development on optical wireless communication systems. We hope that this book will be useful for students, researchers and practitioners in their research studies.
Orthogonal frequency-division multiplexing (OFDM) is a method of digital modulation in which a signal is split into several narrowband channels at different frequencies. CDMA is a form of multiplexing, which allows numerous signals to occupy a single transmission channel, optimising the use of available bandwidth. Multiplexing is sending multiple signals or streams of information on a carrier at the same time in the form of a single, complex signal and then recovering the separate signals at the receiving end. Multi-Carrier (MC) CDMA is a combined technique of Direct Sequence (DS) CDMA (Code Division Multiple Access) and OFDM techniques. It applies spreading sequences in the frequency domain. Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. This technical in-depth book is unique in its detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink Portrays the entire body of knowledge currently available on OFDM Provides the first complete treatment of OFDM, MIMO(Multiple Input Multiple Output)-OFDM and MC-CDMA Considers the benefits of channel coding and space time coding in the context of various application examples and features numerous complete system design examples Converts the lessons of Shannon’s information theory into design principles applicable to practical wireless systems Combines the benefits of a textbook with a research monograph where the depth of discussions progressively increase throughout the book This all-encompassing self-contained treatment will appeal to researchers, postgraduate students and academics, practising research and development engineers working for wireless communications and computer networking companies and senior undergraduate students and technical managers.