Orthogonal Decompositions and Integral Lattices

Orthogonal Decompositions and Integral Lattices

Author: Alexei Kostrikin

Publisher: Walter de Gruyter

Published: 2011-06-01

Total Pages: 549

ISBN-13: 3110901757

DOWNLOAD EBOOK

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany


Groups, Difference Sets, and the Monster

Groups, Difference Sets, and the Monster

Author: K.T. Arasu

Publisher: Walter de Gruyter

Published: 2011-06-24

Total Pages: 477

ISBN-13: 311089310X

DOWNLOAD EBOOK

This series is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.


Sphere Packings, Lattices and Groups

Sphere Packings, Lattices and Groups

Author: John Conway

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 778

ISBN-13: 1475765681

DOWNLOAD EBOOK

The third edition of this definitive and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also examine such related issues as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. There is also a description of the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analogue-to-digital conversion and data compression, n-dimensional crystallography, dual theory and superstring theory in physics. New and of special interest is a report on some recent developments in the field, and an updated and enlarged supplementary bibliography with over 800 items.


Lectures on Gaussian Integral Operators and Classical Groups

Lectures on Gaussian Integral Operators and Classical Groups

Author: Yu. A. Neretin

Publisher: European Mathematical Society

Published: 2011

Total Pages: 576

ISBN-13: 9783037190807

DOWNLOAD EBOOK

This book is an elementary self-contained introduction to some constructions of representation theory and related topics of differential geometry and analysis. Topics covered include the theory of various Fourier-like integral operators such as Segal-Bargmann transforms, Gaussian integral operators in $L^2$ and in the Fock space, integral operators with theta-kernels, the geometry of real and $p$-adic classical groups and symmetric spaces. The heart of the book is the Weil representation of the symplectic group (real and complex realizations, relations with theta-functions and modular forms, $p$-adic and adelic constructions) and representations in Hilbert spaces of holomorphic functions of several complex variables. This book is addressed to graduate students and researchers in representation theory, differential geometry, and operator theory. Prerequisites are standard university courses in linear algebra, functional analysis, and complex analysis.


Galois Fields and Galois Rings Made Easy

Galois Fields and Galois Rings Made Easy

Author: Maurice Kibler

Publisher: Elsevier

Published: 2017-09-22

Total Pages: 272

ISBN-13: 0081023510

DOWNLOAD EBOOK

This book constitutes an elementary introduction to rings and fields, in particular Galois rings and Galois fields, with regard to their application to the theory of quantum information, a field at the crossroads of quantum physics, discrete mathematics and informatics.The existing literature on rings and fields is primarily mathematical. There are a great number of excellent books on the theory of rings and fields written by and for mathematicians, but these can be difficult for physicists and chemists to access.This book offers an introduction to rings and fields with numerous examples. It contains an application to the construction of mutually unbiased bases of pivotal importance in quantum information. It is intended for graduate and undergraduate students and researchers in physics, mathematical physics and quantum chemistry (especially in the domains of advanced quantum mechanics, quantum optics, quantum information theory, classical and quantum computing, and computer engineering).Although the book is not written for mathematicians, given the large number of examples discussed, it may also be of interest to undergraduate students in mathematics. - Contains numerous examples that accompany the text - Includes an important chapter on mutually unbiased bases - Helps physicists and theoretical chemists understand this area of mathematics


The Finite Simple Groups

The Finite Simple Groups

Author: Robert Wilson

Publisher: Springer Science & Business Media

Published: 2009-12-14

Total Pages: 310

ISBN-13: 1848009879

DOWNLOAD EBOOK

Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].


Symmetry: Representation Theory and Its Applications

Symmetry: Representation Theory and Its Applications

Author: Roger Howe

Publisher: Springer

Published: 2015-01-04

Total Pages: 562

ISBN-13: 1493915908

DOWNLOAD EBOOK

Nolan Wallach's mathematical research is remarkable in both its breadth and depth. His contributions to many fields include representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations, Riemannian geometry, ring theory, and quantum information theory. The touchstone and unifying thread running through all his work is the idea of symmetry. This volume is a collection of invited articles that pay tribute to Wallach's ideas, and show symmetry at work in a large variety of areas. The articles, predominantly expository, are written by distinguished mathematicians and contain sufficient preliminary material to reach the widest possible audiences. Graduate students, mathematicians, and physicists interested in representation theory and its applications will find many gems in this volume that have not appeared in print elsewhere. Contributors: D. Barbasch, K. Baur, O. Bucicovschi, B. Casselman, D. Ciubotaru, M. Colarusso, P. Delorme, T. Enright, W.T. Gan, A Garsia, G. Gour, B. Gross, J. Haglund, G. Han, P. Harris, J. Hong, R. Howe, M. Hunziker, B. Kostant, H. Kraft, D. Meyer, R. Miatello, L. Ni, G. Schwarz, L. Small, D. Vogan, N. Wallach, J. Wolf, G. Xin, O. Yacobi.


Geometry of Quantum States

Geometry of Quantum States

Author: Ingemar Bengtsson

Publisher: Cambridge University Press

Published: 2017-08-18

Total Pages: 637

ISBN-13: 1108293492

DOWNLOAD EBOOK

Quantum information theory is a branch of science at the frontier of physics, mathematics, and information science, and offers a variety of solutions that are impossible using classical theory. This book provides a detailed introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. The second edition contains new sections and entirely new chapters: the hot topic of multipartite entanglement; in-depth discussion of the discrete structures in finite dimensional Hilbert space, including unitary operator bases, mutually unbiased bases, symmetric informationally complete generalized measurements, discrete Wigner function, and unitary designs; the Gleason and Kochen–Specker theorems; the proof of the Lieb conjecture; the measure concentration phenomenon; and the Hastings' non-additivity theorem. This richly-illustrated book will be useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied.


Embedding Problems in Symplectic Geometry

Embedding Problems in Symplectic Geometry

Author: Felix Schlenk

Publisher: Walter de Gruyter

Published: 2008-08-22

Total Pages: 261

ISBN-13: 3110199696

DOWNLOAD EBOOK

Symplectic geometry is the geometry underlying Hamiltonian dynamics, and symplectic mappings arise as time-1-maps of Hamiltonian flows. The spectacular rigidity phenomena for symplectic mappings discovered in the last two decades show that certain things cannot be done by a symplectic mapping. For instance, Gromov's famous "non-squeezing'' theorem states that one cannot map a ball into a thinner cylinder by a symplectic embedding. The aim of this book is to show that certain other things can be done by symplectic mappings. This is achieved by various elementary and explicit symplectic embedding constructions, such as "folding", "wrapping'', and "lifting''. These constructions are carried out in detail and are used to solve some specific symplectic embedding problems. The exposition is self-contained and addressed to students and researchers interested in geometry or dynamics.