Organized Collapse: An Introduction to Discrete Morse Theory

Organized Collapse: An Introduction to Discrete Morse Theory

Author: Dmitry N. Kozlov

Publisher: American Mathematical Society

Published: 2021-02-18

Total Pages: 312

ISBN-13: 1470464551

DOWNLOAD EBOOK

Applied topology is a modern subject which emerged in recent years at a crossroads of many methods, all of them topological in nature, which were used in a wide variety of applications in classical mathematics and beyond. Within applied topology, discrete Morse theory came into light as one of the main tools to understand cell complexes arising in different contexts, as well as to reduce the complexity of homology calculations. The present book provides a gentle introduction into this beautiful theory. Using a combinatorial approach—the author emphasizes acyclic matchings as the central object of study. The first two parts of the book can be used as a stand-alone introduction to homology, the last two parts delve into the core of discrete Morse theory. The presentation is broad, ranging from abstract topics, such as formulation of the entire theory using poset maps with small fibers, to heavily computational aspects, providing, for example, a specific algorithm of finding an explicit homology basis starting from an acyclic matching. The book will be appreciated by graduate students in applied topology, students and specialists in computer science and engineering, as well as research mathematicians interested in learning about the subject and applying it in context of their fields.


ORGANIZED COLLAPSE

ORGANIZED COLLAPSE

Author: DMITRY N. KOZLOV.

Publisher:

Published:

Total Pages: 339

ISBN-13: 9781470460082

DOWNLOAD EBOOK

Applied topology is a modern subject which emerged in recent years at a crossroads of many methods, all of them topological in nature, which were used in a wide variety of applications in classical mathematics and beyond. Within applied topology, discrete Morse theory came into light as one of the main tools to understand cell complexes arising in different contexts, as well as to reduce the complexity of homology calculations. The present book provides a gentle introduction into this beautiful theory. Using a combinatorial approach--the author emphasizes acyclic matchings as the central objec.


Introduction to Smooth Ergodic Theory

Introduction to Smooth Ergodic Theory

Author: Luís Barreira

Publisher: American Mathematical Society

Published: 2023-04-28

Total Pages: 355

ISBN-13: 1470473070

DOWNLOAD EBOOK

This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. A detailed description of all the basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature, is also presented. There are more than 80 exercises. The book is aimed at graduate students specializing in dynamical systems and ergodic theory as well as anyone who wishes to get a working knowledge of smooth ergodic theory and to learn how to use its tools. It can also be used as a source for special topics courses on nonuniform hyperbolicity. The only prerequisite for using this book is a basic knowledge of real analysis, measure theory, differential equations, and topology, although the necessary background definitions and results are provided. In this second edition, the authors improved the exposition and added more exercises to make the book even more student-oriented. They also added new material to bring the book more in line with the current research in dynamical systems.


An Introductory Course on Mathematical Game Theory and Applications

An Introductory Course on Mathematical Game Theory and Applications

Author: Julio González-Díaz

Publisher: American Mathematical Society

Published: 2023-12-05

Total Pages: 432

ISBN-13: 1470475634

DOWNLOAD EBOOK

Game theory provides a mathematical setting for analyzing competition and cooperation in interactive situations. The theory has been famously applied in economics, but is relevant in many other sciences, such as psychology, computer science, artificial intelligence, biology, and political science. This book presents an introductory and up-to-date course on game theory addressed to mathematicians and economists, and to other scientists having a basic mathematical background. The book is self-contained, providing a formal description of the classic game-theoretic concepts together with rigorous proofs of the main results in the field. The theory is illustrated through abundant examples, applications, and exercises. The style is distinctively concise, while offering motivations and interpretations of the theory to make the book accessible to a wide readership. The basic concepts and results of game theory are given a formal treatment, and the mathematical tools necessary to develop them are carefully presented. In this second edition, the content on cooperative games is considerably strengthened, with a new chapter on applications of cooperative games and operations research, including some material on computational aspects and applications outside academia.


Discrete Analogues in Harmonic Analysis

Discrete Analogues in Harmonic Analysis

Author: Ben Krause

Publisher: American Mathematical Society

Published: 2023-01-19

Total Pages: 592

ISBN-13: 1470468573

DOWNLOAD EBOOK

This timely book explores certain modern topics and connections at the interface of harmonic analysis, ergodic theory, number theory, and additive combinatorics. The main ideas were pioneered by Bourgain and Stein, motivated by questions involving averages over polynomial sequences, but the subject has grown significantly over the last 30 years, through the work of many researchers, and has steadily become one of the most dynamic areas of modern harmonic analysis. The author has succeeded admirably in choosing and presenting a large number of ideas in a mostly self-contained and exciting monograph that reflects his interesting personal perspective and expertise into these topics. —Alexandru Ionescu, Princeton University Discrete harmonic analysis is a rapidly developing field of mathematics that fuses together classical Fourier analysis, probability theory, ergodic theory, analytic number theory, and additive combinatorics in new and interesting ways. While one can find good treatments of each of these individual ingredients from other sources, to my knowledge this is the first text that treats the subject of discrete harmonic analysis holistically. The presentation is highly accessible and suitable for students with an introductory graduate knowledge of analysis, with many of the basic techniques explained first in simple contexts and with informal intuitions before being applied to more complicated problems; it will be a useful resource for practitioners in this field of all levels. —Terence Tao, University of California, Los Angeles


Introduction to Complex Manifolds

Introduction to Complex Manifolds

Author: John M. Lee

Publisher: American Mathematical Society

Published: 2024-05-13

Total Pages: 377

ISBN-13: 1470476959

DOWNLOAD EBOOK

Complex manifolds are smooth manifolds endowed with coordinate charts that overlap holomorphically. They have deep and beautiful applications in many areas of mathematics. This book is an introduction to the concepts, techniques, and main results about complex manifolds (mainly compact ones), and it tells a story. Starting from familiarity with smooth manifolds and Riemannian geometry, it gradually explains what is different about complex manifolds and develops most of the main tools for working with them, using the Kodaira embedding theorem as a motivating project throughout. The approach and style will be familiar to readers of the author's previous graduate texts: new concepts are introduced gently, with as much intuition and motivation as possible, always relating new concepts to familiar old ones, with plenty of examples. The main prerequisite is familiarity with the basic results on topological, smooth, and Riemannian manifolds. The book is intended for graduate students and researchers in differential geometry, but it will also be appreciated by students of algebraic geometry who wish to understand the motivations, analogies, and analytic results that come from the world of differential geometry.


Introduction to the $h$-Principle

Introduction to the $h$-Principle

Author: K. Cieliebak

Publisher: American Mathematical Society

Published: 2024-01-30

Total Pages: 384

ISBN-13: 1470476177

DOWNLOAD EBOOK

In differential geometry and topology one often deals with systems of partial differential equations as well as partial differential inequalities that have infinitely many solutions whatever boundary conditions are imposed. It was discovered in the 1950s that the solvability of differential relations (i.e., equations and inequalities) of this kind can often be reduced to a problem of a purely homotopy-theoretic nature. One says in this case that the corresponding differential relation satisfies the $h$-principle. Two famous examples of the $h$-principle, the Nash–Kuiper $C^1$-isometric embedding theory in Riemannian geometry and the Smale–Hirsch immersion theory in differential topology, were later transformed by Gromov into powerful general methods for establishing the $h$-principle. The authors cover two main methods for proving the $h$-principle: holonomic approximation and convex integration. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. A special emphasis is made on applications to symplectic and contact geometry. The present book is the first broadly accessible exposition of the theory and its applications, making it an excellent text for a graduate course on geometric methods for solving partial differential equations and inequalities. Geometers, topologists, and analysts will also find much value in this very readable exposition of an important and remarkable topic. This second edition of the book is significantly revised and expanded to almost twice of the original size. The most significant addition to the original book is the new part devoted to the method of wrinkling and its applications. Several other chapters (e.g., on multivalued holonomic approximation and foliations) are either added or completely rewritten.


Geometry and Discrete Mathematics

Geometry and Discrete Mathematics

Author: Benjamin Fine

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-08-22

Total Pages: 364

ISBN-13: 3110740788

DOWNLOAD EBOOK

Fundamentals of mathematics are presented in the two-volume set in an exciting and pedagogically sound way. The present volume examines the most important basic results in geometry and discrete mathematics, along with their proofs, and also their history. New: A chapter on discrete Morse theory and still more graph theory for solving further classical problems as the Travelling Salesman and Postman problem.


Portfolio Theory and Arbitrage: A Course in Mathematical Finance

Portfolio Theory and Arbitrage: A Course in Mathematical Finance

Author: Ioannis Karatzas

Publisher: American Mathematical Soc.

Published: 2021-08-12

Total Pages: 309

ISBN-13: 1470460149

DOWNLOAD EBOOK

This book develops a mathematical theory for finance, based on a simple and intuitive absence-of-arbitrage principle. This posits that it should not be possible to fund a non-trivial liability, starting with initial capital arbitrarily near zero. The principle is easy-to-test in specific models, as it is described in terms of the underlying market characteristics; it is shown to be equivalent to the existence of the so-called “Kelly” or growth-optimal portfolio, of the log-optimal portfolio, and of appropriate local martingale deflators. The resulting theory is powerful enough to treat in great generality the fundamental questions of hedging, valuation, and portfolio optimization. The book contains a considerable amount of new research and results, as well as a significant number of exercises. It can be used as a basic text for graduate courses in Probability and Stochastic Analysis, and in Mathematical Finance. No prior familiarity with finance is required, but it is assumed that readers have a good working knowledge of real analysis, measure theory, and of basic probability theory. Familiarity with stochastic analysis is also assumed, as is integration with respect to continuous semimartingales.