Organic Photovoltaic Cells and Graphene Transparent Conductors

Organic Photovoltaic Cells and Graphene Transparent Conductors

Author: Wu Junbo

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Organic photovoltaic cell (OPV) is a promising technology because of its potential for low-cost high-throughput roll-to-roll manufacturing. Significant improvements have been achieved in power conversion efficiency (PCE) of OPV cells during last two decades. While recent progress in raising the PCE has been encouraging, the PCE of organic solar cells is still limited and needs to be improved to meet the requirement for commercial applications. Further improvements in both material properties and device architectures are necessary. Photocurrent generation in an OPV cell is fundamentally different from the process that takes place in their inorganic counterparts. A detailed understanding of the operation mechanisms of OPV cells and optimization of the fundamental electronic properties of the system (or material) are critical. In this work, I will first discuss major factors that limit the efficiency of bilayer OPV cells, such as exciton binding energy, exciton diffusion length, charge separation and open-circuit voltage. The exciton binding energy is one of the key parameters that govern the operation of OPV cells, and determines the required energy band offset between donor and acceptor, and thus the achievable open-circuit voltage of the donor-acceptor combination. Exciton diffusion is a main bottleneck limiting photocurrent of a bi-layer OPV cell, which depends on material properties and film morphology. The energy loss between optical excitation and extracted electrical power is mainly due to the energy band offset between donor and acceptor in OPV cells. The PCE limit for single junction OPV cell can be estimated based on the findings. In the second part of this work, I will focus on transparent conductors, which are essential components of thin-film optoelectronic devices. Sputtered Indium-Tin-Oxide (ITO) is currently the most commonly used transparent electrode material, but it has a number of shortcomings. There is a clear need for alternative transparent electrodes whose optical and electrical performance is similar to that of ITO but without its drawbacks. The next generation transparent conductor should also be lightweight, flexible, cheap, environmental attractive, and compatible with large-scale manufacturing methods. I will discuss the possibility of using graphene thin films as a replacement for ITO. Theoretical estimates indicate that graphene thin films are promising transparent electrodes for thin-film optoelectronic devices, with an unmatched combination of sheet resistance and transparency. For the first time, we demonstrated that solution-processed graphene thin films can serve as transparent conductive anodes for both OPV cells and organic light-emitting diodes (OLEDs). The graphene electrodes were deposited on quartz substrates by spin-coating of an aqueous dispersion of functionalized graphene, followed by a vacuum anneal step to reduce the sheet resistance. Small molecular weight organic materials and a metal cathode were directly deposited on the graphene anodes, resulting in devices with a performance comparable to control devices on ITO transparent anodes. Device modeling has been explored to compare the performance between graphene-based device and ITO-based control device. Transfer of graphene films to a foreign flexible substrate was also demonstrated which opens up new opportunities for low-cost flexible organic opto-electronics.


Graphene for Transparent Conductors

Graphene for Transparent Conductors

Author: Qingbin Zheng

Publisher: Springer

Published: 2015-07-01

Total Pages: 231

ISBN-13: 1493927698

DOWNLOAD EBOOK

This book provides a systematic presentation of the principles and practices behind the synthesis and functionalization of graphene and grapheme oxide (GO), as well as the fabrication techniques for transparent conductors from these materials. Transparent conductors are used in a wide variety of photoelectronic and photovoltaic devices, such as liquid crystal displays (LCDs), solar cells, optical communication devices, and solid-state lighting. Thin films made from indium tin oxide (ITO) have thus far been the dominant source of transparent conductors, and now account for 50% of indium consumption. However, the price of Indium has increased 1000% in the last 10 years. Graphene, a two-dimensional monolayer of sp2-bonded carbon atoms, has attracted significant interest because of its unique transport properties. Because of their high optical transmittance and electrical conductivity, thin film electrodes made from graphene nanosheets have been considered an ideal candidate to replace expensive ITO films. Graphene for Transparent Conductors offers a systematic presentation of the principles, theories and technical practices behind the structure–property relationship of the thin films, which are the key to the successful development of high-performance transparent conductors. At the same time, the unique perspectives provided in the applications of graphene and GO as transparent conductors will serve as a general guide to the design and fabrication of thin film materials for specific applications.


Organic Solar Cells

Organic Solar Cells

Author: Wallace C.H. Choy

Publisher: Springer Science & Business Media

Published: 2012-11-19

Total Pages: 268

ISBN-13: 1447148231

DOWNLOAD EBOOK

Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.


Integration of Few Kayer Graphene Nanomaterials in Organic Solar Cells as (transparent) Conductor Electrodes

Integration of Few Kayer Graphene Nanomaterials in Organic Solar Cells as (transparent) Conductor Electrodes

Author: Azhar Ali Ayaz Pirzado

Publisher:

Published: 2015

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Graphene mate rials have been researched as viable alternatives of transparent conductors electrodes (TCEs) in this thesis. Current study focuses on few layer graphene (FLG), reduced graphene oxide (rGO) and their hybrids with carbon nanotubes (CNTs) for TCE applications inorganic solar cells (OSCs). FLGs and rGOs have been prepared by mechanical and microwave-assisted exfoliation methods. This films of these materials have been produced by hot-spray method. Results of charge transport characterizations by four-point probes, transparency (UV-Vis), measurements, along with morphological (SEM, TEM) and topgraphic (AFM) studies of films have been presented. UPS studies were performed to determine for a work-function. XPS,Raman and Photoluminescence studies have been employed to obtain the information about the structural quality of the samples.


Solution-Processed Graphene-Based Transparent Conductive Electrodes as Ideal ITO Alternatives for Organic Solar Cells

Solution-Processed Graphene-Based Transparent Conductive Electrodes as Ideal ITO Alternatives for Organic Solar Cells

Author: Minas M. Stylianakis

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The isolation of free-standing graphene in 2004 was the spark for a new scientific revolution in the field of optoelectronics. Due to its extraordinary optoelectronic and mechanical properties, graphene is the next wonder material that could act as an ideal low-cost alternative material for the effective replacement of the expensive conventional materials used in organic optoelectronic applications. Indeed, the enhanced electrical conductivity of graphene combined with its high transparency in visible and near-infrared spectra, enabled graphene to be an ideal low-cost indium tin oxide (ITO) alternative in organic solar cells (OSCs). The prospects and future research trend in graphene-based TCE are also discussed. On the other hand, solution-processed graphene combines the unique optoelectrical properties of graphene with large area deposition and flexible substrates making it compatible with printing and coating technologies, such as roll-to-roll, inkjet, gravure, and flexographic printing manufacturing methods. This chapter provides an overview of the most recent research progress in the application of solution-processed graphene-based films as transparent conductive electrodes (TCEs) in OSCs. (a) Chemically converted graphene (CCG), (b) thermally and photochemically reduced graphene oxide, (c) composite reduced graphene oxide-carbon nanotubes, and (d) reduced graphene oxide mesh films have demonstrated their applicability in OSCs as transparent, conductive electrodes.


Solar Cells—Advances in Research and Application: 2013 Edition

Solar Cells—Advances in Research and Application: 2013 Edition

Author:

Publisher: ScholarlyEditions

Published: 2013-05-01

Total Pages: 338

ISBN-13: 1490104674

DOWNLOAD EBOOK

Solar Cells—Advances in Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Hybrid Solar Cells. The editors have built Solar Cells—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Hybrid Solar Cells in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Solar Cells—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.


Graphene Optoelectronics

Graphene Optoelectronics

Author: Abdul Rashid bin M. Yusoff

Publisher: John Wiley & Sons

Published: 2014-08-25

Total Pages: 352

ISBN-13: 3527677801

DOWNLOAD EBOOK

This first book on emerging applications for this innovative material gives an up-to-date account of the many opportunities graphene offers high-end optoelectronics. The text focuses on potential as well as already realized applications, discussing metallic and passive components, such as transparent conductors and smart windows, as well as high-frequency devices, spintronics, photonics, and terahertz devices. Also included are sections on the fundamental properties, synthesis, and characterization of graphene. With its unique coverage, this book will be welcomed by materials scientists, solid-state chemists and solid-state physicists alike.


Transparent Conductive Materials

Transparent Conductive Materials

Author: David Levy

Publisher: John Wiley & Sons

Published: 2019-04-29

Total Pages: 390

ISBN-13: 3527342079

DOWNLOAD EBOOK

Edited by well-known pioneers in the field, this handbook and ready reference provides a comprehensive overview of transparent conductive materials with a strong application focus. Following an introduction to the materials and recent developments, subsequent chapters discuss the synthesis and characterization as well as the deposition techniques that are commonly used for energy harvesting and light emitting applications. Finally, the book concludes with a look at future technological advances. All-encompassing and up-to-date, this interdisciplinary text runs the gamut from chemistry and materials science to engineering, from academia to industry, and from fundamental challenges to readily available applications.


Chapter Solution-Processed Graphene-Based Transparent Conductive Electrodes as Ideal ITO Alternatives for Organic Solar Cells

Chapter Solution-Processed Graphene-Based Transparent Conductive Electrodes as Ideal ITO Alternatives for Organic Solar Cells

Author: Minas M. Stylianakis

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The isolation of free-standing graphene in 2004 was the spark for a new scientific revolution in the field of optoelectronics. Due to its extraordinary optoelectronic and mechanical properties, graphene is the next wonder material that could act as an ideal low-cost alternative material for the effective replacement of the expensive conventional materials used in organic optoelectronic applications. Indeed, the enhanced electrical conductivity of graphene combined with its high transparency in visible and near-infrared spectra, enabled graphene to be an ideal low-cost indium tin oxide (ITO) alternative in organic solar cells (OSCs). The prospects and future research trend in graphene-based TCE are also discussed. On the other hand, solution-processed graphene combines the unique optoelectrical properties of graphene with large area deposition and flexible substrates making it compatible with printing and coating technologies, such as roll-to-roll, inkjet, gravure, and flexographic printing manufacturing methods. This chapter provides an overview of the most recent research progress in the application of solution-processed graphene-based films as transparent conductive electrodes (TCEs) in OSCs. (a) Chemically converted graphene (CCG), (b) thermally and photochemically reduced graphene oxide, (c) composite reduced graphene oxide-carbon nanotubes, and (d) reduced graphene oxide mesh films have demonstrated their applicability in OSCs as transparent, conductive electrodes.


Organic Solar Cells

Organic Solar Cells

Author: Wallace C.H. Choy

Publisher: Springer

Published: 2012-11-17

Total Pages: 266

ISBN-13: 9781447148241

DOWNLOAD EBOOK

Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.