Organic Electronics in Sensors and Biotechnology

Organic Electronics in Sensors and Biotechnology

Author: Ruth Shinar

Publisher: McGraw Hill Professional

Published: 2009-07-09

Total Pages: 459

ISBN-13: 0071596763

DOWNLOAD EBOOK

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. The latest in organic electronics-based sensing and biotechnology Develop high-performance, field-deployable organic semiconductor-based biological, chemical, and physical sensor arrays using the comprehensive information contained in this definitive volume. Organic Electronics in Sensors and Biotechnology presents state-of-the-art technology alongside real-world applications and ongoing R & D. Learn about light, temperature, and pressure monitors, integrated flexible pyroelectric sensors, sensing of organic and inorganic compounds, and design of compact photoluminescent sensors. You will also get full details on organic lasers, organic electronics in memory elements, disease and pathogen detection, and conjugated polymers for advancing cellular biology. Monitor organic and inorganic compounds with OFETs Characterize organic materials using impedance spectroscopy Work with organic LEDs, photodetectors, and photovoltaic cells Form flexible pyroelectric sensors integrated with OFETs Build PL-based chemical and biological sensing modules and arrays Design organic semiconductor lasers and memory elements Use luminescent conjugated polymers as optical biosensors Deploy polymer-based switches and ion pumps at the microfluidic level


Green Materials for Electronics

Green Materials for Electronics

Author: Mihai Irimia-Vladu

Publisher: John Wiley & Sons

Published: 2017-12-04

Total Pages: 348

ISBN-13: 3527338659

DOWNLOAD EBOOK

Combining the materials science, technological, and device aspects of organic bioelectronics based on green materials, this is the first overview of the emerging concepts involving fabrication techniques for sustainable electronics with low energy and material consumption. With contributions from top-notch editors and authors, in one focus, the book covers a collection of natural materials suited for electronics applications such as paper, silk, melanin, DNA and nucleobases, resins, gums, saccharides, cellulose, gelatine and peptides. In another thrust, the book focuses on device fabrication based on these materials, including processing aspects, and applications such as sensors, signal transducers, transient, implantable and digestible electronics. With its interdisciplinary approach this text will appeal to the chemistry, physics, materials science, and engineering communities.


Chemical, Gas, and Biosensors for Internet of Things and Related Applications

Chemical, Gas, and Biosensors for Internet of Things and Related Applications

Author: Kohji Mitsubayashi

Publisher: Elsevier

Published: 2019-06-14

Total Pages: 408

ISBN-13: 0128154101

DOWNLOAD EBOOK

Chemical, Gas, and Biosensors for the Internet of Things and Related Applications brings together the fields of sensors and analytical chemistry, devices and machines, and network and information technology. This thorough resource enables researchers to effectively collaborate to advance this rapidly expanding, interdisciplinary area of study. As innovative developments in the Internet of Things (IoT) continue to open new possibilities for quality of life improvement, sensor technology must keep pace, Drs. Mitsubayashi, Niwa and Ueno have brought together the top minds in their respective fields to provide the latest information on the numerous uses of this technology. Topics covered include life-assist systems, network monitoring with portable environmental sensors, wireless livestock health monitoring, point-of-care health monitoring, organic electronics and bio-batteries, and more. - 2020 PROSE Awards - Winner: Category: Chemistry and Physics: Association of American Publishers - Describes the latest advances and underlying principles of sensors used in biomedicine, healthcare, biotechnology, nanotechnology and food and environment safety - Focuses on sensors' methods of data communication, logging and analysis for IoT applications - Explains the specific requirements of sensor design and performance improvement, helping researchers enhance sensitivity, selectivity, stability, reproducibility and response time


Solution-Processable Components for Organic Electronic Devices

Solution-Processable Components for Organic Electronic Devices

Author: Beata Luszczynska

Publisher: John Wiley & Sons

Published: 2019-06-11

Total Pages: 688

ISBN-13: 3527814949

DOWNLOAD EBOOK

Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.


Organic and Inorganic Materials Based Sensors, 3 Volumes

Organic and Inorganic Materials Based Sensors, 3 Volumes

Author: Sangita Das

Publisher: John Wiley & Sons

Published: 2023-12-22

Total Pages: 1409

ISBN-13: 3527846689

DOWNLOAD EBOOK

Organic and Inorganic Materials Based Sensors A three-volume comprehensive overview of the development and applications of various novel potent molecular sensor frameworks In Organic and Inorganic Materials Based Sensors (3 Volume Set), a team of distinguished researchers delivers an interdisciplinary presentation of the engineering of high-performance biopolymer-based bio-nanocomposites, as well as strategies for the use of various molecules in the detection of environmentally important guest analytes. This three-volume book explores the most relevant technological developments in nanomaterials sensors and offers a broad and comprehensive overview of cutting-edge research on advanced materials in the fast-moving sensors industry. The authors explain the science behind nanomaterials for environmental remediation as well as the components and ingredients of the relevant materials. Readers will also find: Thorough introductions to sensory devices, polymer-based nano-biomaterials, and opto-electrochemical devices Comprehensive explorations of metal–organic frameworks, organic sensors, and organic–inorganic composite semiconductor sensors Practical discussions of vapochromic and vapoluminescent sensors Fulsome treatments of sensor ecosystems for health self-monitoring, including discussions of diabetes management Perfect for materials scientists, mechanical engineers, and analytical chemists, Organic and Inorganic Materials Based Sensors will also benefit inorganic and organic chemists, robotics engineers, and professionals working in the sensor industry.


Electrical Characterization of Organic Electronic Materials and Devices

Electrical Characterization of Organic Electronic Materials and Devices

Author: Professor Peter Stallinga

Publisher: John Wiley & Sons

Published: 2009-10-08

Total Pages: 316

ISBN-13: 0470750170

DOWNLOAD EBOOK

Think like an electron Organic electronic materials have many applications and potential in low-cost electronics such as electronic barcodes and in light emitting devices, due to their easily tailored properties. While the chemical aspects and characterization have been widely studied, characterization of the electrical properties has been neglected, and classic textbook modeling has been applied. This is most striking in the analysis of thin-film transistors (TFTs) using thick “bulk” transistor (MOS-FET) descriptions. At first glance the TFTs appear to behave as regular MOS-FETs. However, upon closer examination it is clear that TFTs are unique and merit their own model. Understanding and interpreting measurements of organic devices, which are often seen as black-box measurements, is critical to developing better devices and this, therefore, has to be done with care. Electrical Characterization of Organic Electronic Materials and Devices Gives new insights into the electronic properties and measurement techniques for low-mobility electronic devices Characterizes the thin-film transistor using its own model Links the phenomena seen in different device structures and different measurement techniques Presents clearly both how to perform electrical measurements of organic and low-mobility materials and how to extract important information from these measurements Provides a much-needed theoretical foundation for organic electronics


Handbook of Flexible Organic Electronics

Handbook of Flexible Organic Electronics

Author: Stergios Logothetidis

Publisher: Elsevier

Published: 2014-12-03

Total Pages: 483

ISBN-13: 1782420436

DOWNLOAD EBOOK

Organic flexible electronics represent a highly promising technology that will provide increased functionality and the potential to meet future challenges of scalability, flexibility, low power consumption, light weight, and reduced cost. They will find new applications because they can be used with curved surfaces and incorporated in to a number of products that could not support traditional electronics. The book covers device physics, processing and manufacturing technologies, circuits and packaging, metrology and diagnostic tools, architectures, and systems engineering. Part one covers the production, properties and characterisation of flexible organic materials and part two looks at applications for flexible organic devices. - Reviews the properties and production of various flexible organic materials. - Describes the integration technologies of flexible organic electronics and their manufacturing methods. - Looks at the application of flexible organic materials in smart integrated systems and circuits, chemical sensors, microfluidic devices, organic non-volatile memory devices, and printed batteries and other power storage devices.


Smart Sensors for Environmental and Medical Applications

Smart Sensors for Environmental and Medical Applications

Author: Hamida Hallil

Publisher: John Wiley & Sons

Published: 2020-05-12

Total Pages: 240

ISBN-13: 1119587344

DOWNLOAD EBOOK

Provides an introduction to the topic of smart chemical sensors, along with an overview of the state of the art based on potential applications This book presents a comprehensive overview of chemical sensors, ranging from the choice of material to sensor validation, modeling, simulation, and manufacturing. It discusses the process of data collection by intelligent techniques such as deep learning, multivariate analysis, and others. It also incorporates different types of smart chemical sensors and discusses each under a common set of sub-sections so that readers can fully understand the advantages and disadvantages of the relevant transducers—depending on the design, transduction mode, and final applications. Smart Sensors for Environmental and Medical Applications covers all major aspects of the field of smart chemical sensors, including working principle and related theory, sensor materials, classification of respective transducer type, relevant fabrication processes, methods for data analysis, and suitable applications. Chapters address field effect transistors technologies for biological and chemical sensors, mammalian cell–based electrochemical sensors for label-free monitoring of analytes, electronic tongues, chemical sensors based on metal oxides, metal oxide (MOX) gas sensor electronic interfaces, and more. Addressing the limitations and challenges in obtaining state-of-the-art smart biochemical sensors, this book: Balances the fundamentals of sensor design, fabrication, characterization, and analysis with advanced methods Categorizes sensors into sub-types and describes their working, focusing on prominent applications Describes instrumentation and IoT networking methods of chemical transducers that can be used for inexpensive, accurate detection in commercialized smart chemical sensors Covers monitoring of food spoilage using polydiacetylene- and liposome-based sensors; smart and intelligent E-nose for sensitive and selective chemical sensing applications; odor sensing system; and microwave chemical sensors Smart Sensors for Environmental and Medical Applications is an important book for senior-level undergraduate and graduate students learning about this high-performance technology and its many applications. It will also inform practitioners and researchers involved in the creation and use of smart sensors.


Short-Channel Organic Thin-Film Transistors

Short-Channel Organic Thin-Film Transistors

Author: Tarek Zaki

Publisher: Springer

Published: 2015-05-27

Total Pages: 232

ISBN-13: 3319188968

DOWNLOAD EBOOK

This work takes advantage of high-resolution silicon stencil masks to build air-stable complementary OTFTs using a low-temperature fabrication process. Plastic electronics based on organic thin-film transistors (OTFTs) pave the way for cheap, flexible and large-area products. Over the past few years, OTFTs have undergone remarkable advances in terms of reliability, performance and scale of integration. Many factors contribute to the allure of this technology; the masks exhibit excellent stiffness and stability, thus allowing OTFTs with submicrometer channel lengths and superb device uniformity to be patterned. Furthermore, the OTFTs employ an ultra-thin gate dielectric that provides a sufficiently high capacitance to enable the transistors to operate at voltages as low as 3 V. The critical challenges in this development are the subtle mechanisms that govern the properties of aggressively scaled OTFTs. These mechanisms, dictated by device physics, are well described and implemented into circuit-design tools to ensure adequate simulation accuracy.


Opportunities in Biotechnology for Future Army Applications

Opportunities in Biotechnology for Future Army Applications

Author: National Research Council

Publisher: National Academies Press

Published: 2001-07-11

Total Pages: 118

ISBN-13: 0309075556

DOWNLOAD EBOOK

This report surveys opportunities for future Army applications in biotechnology, including sensors, electronics and computers, materials, logistics, and medical therapeutics, by matching commercial trends and developments with enduring Army requirements. Several biotechnology areas are identified as important for the Army to exploit, either by direct funding of research or by indirect influence of commercial sources, to achieve significant gains in combat effectiveness before 2025.