Organic dye laser stands a chance to become the next generation of the light source. It is very interesting because organic dyes can cover a wide range of the pectrum of visible light. To realise organic solid-state laser, several organic dyes can be doped in a polymer matrix. One of the examples of low-priced polymer is poly(methyl methacrylate) (PMMA). However, the study of PMMA as a polymer matrix for organic dyes as a thin-film laser was not extensive. This thesis focused on the feasibility of organic dye-doped PMMA as a thin-film laser.
Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.
Solution-Processed Organic Light-Emitting Devices provides a comprehensive reference on the principles and advances in materials design, device structures, and processing technologies of organic light-emitting diodes (OLEDs). Most importantly, the book analyses the dynamics of thin-film growth from solutions such as solvent orthogonalization, coffee-ring effects, and interfacial adhesion. Exciton generation and utilization, host–guest energy transfer, and interfacial interaction in the solution-processed films are considered with the material and device design to maximize the electroluminescent performance of OLEDs.The book reviews the materials, devices, and technologies dedicated to solution-processed thin-film devices, which are not only applicable to OLEDs but may be adapted to other emerging semiconducting devices due to the similarity in methods (for instance, quantum-dot LEDs and solar cells, and perovskite-based LEDs/photovoltaics/detectors).This book is suitable for researchers in academia and industry working in the materials science and engineering, chemistry, and physics disciplines. - Discusses the most relevant and emerging solution-processable materials for OLED applications - Reviews device engineering to address defects, charge transport, and exciton generation in fabricated solution-processable thin films - Provides the methods to grow multilayered thin films from solutions with organic semiconductors, with particular attention to new technologies to overcome interfacial mixing effects
Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.
Modern Trends in Physics Research MTPR-08 was the third of the International Conference series held biannually by the Physics Department in Faculty of Science of Cairo University.The objectives of the conference are to develop greater understanding of physics research and its applications to promote new industries; to innovate knowledge about recent breakthroughs in physics, both the fundamental and technological aspects; to implement of international cooperation in new trends in physics research and to improve the performance of the physics research facilities in Egypt. This proceeding highlights the latest results in the fields of astrophysics, atomic, molecular, condensed matter, lasers, nuclear and particle physics. The peer refereed papers collected in this volume, were written by international experts in these fields. The keynote lecture, “Overview on the Era of the Exploration of the Planets and Planetary Systems,” delivered by Professor Jay M Pasachoff of Williams College — Hopkins Observatory was featured in the proceedings. As 2008 was the 50th anniversary of the launch of Sputnik, which began the Space Age, this volume is a unique collection of keynote, plenary and invited presentations covering fields of astrophysics, atomic physics, condensed matter physics as well as nanotechnology, molecular physics and laser physics. This volume will serve as a useful reference for scientists in modern physics and technology of the 21st century.
Modern Trends in Physics Research MTPR-08 was the third of the International Conference series held biannually by the Physics Department in Faculty of Science of Cairo University.The objectives of the conference are to develop greater understanding of physics research and its applications to promote new industries; to innovate knowledge about recent breakthroughs in physics, both the fundamental and technological aspects; to implement of international cooperation in new trends in physics research and to improve the performance of the physics research facilities in Egypt. This proceeding highlights the latest results in the fields of astrophysics, atomic, molecular, condensed matter, lasers, nuclear and particle physics. The peer refereed papers collected in this volume, were written by international experts in these fields. The keynote lecture, ?Overview on the Era of the Exploration of the Planets and Planetary Systems,? delivered by Professor Jay M Pasachoff of Williams College ? Hopkins Observatory was featured in the proceedings. As 2008 was the 50th anniversary of the launch of Sputnik, which began the Space Age, this volume is a unique collection of keynote, plenary and invited presentations covering fields of astrophysics, atomic physics, condensed matter physics as well as nanotechnology, molecular physics and laser physics. This volume will serve as a useful reference for scientists in modern physics and technology of the 21st century.