Differential and Integral Equations

Differential and Integral Equations

Author: Peter J. Collins

Publisher: Oxford University Press, USA

Published: 2006-08-03

Total Pages: 387

ISBN-13: 0198533829

DOWNLOAD EBOOK

Differential & integral equations involve important mathematical techniques, & as such will be encountered by mathematicians, & physical & social scientists, in their undergraduate courses. This text provides a clear, comprehensive guide to first- & second- order ordinary & partial differential equations.


Singular Differential and Integral Equations with Applications

Singular Differential and Integral Equations with Applications

Author: R.P. Agarwal

Publisher: Springer Science & Business Media

Published: 2003-07-31

Total Pages: 428

ISBN-13: 9781402014574

DOWNLOAD EBOOK

In the last century many problems which arose in the science, engineer ing and technology literature involved nonlinear complex phenomena. In many situations these natural phenomena give rise to (i). ordinary differ ential equations which are singular in the independent and/or dependent variables together with initial and boundary conditions, and (ii). Volterra and Fredholm type integral equations. As one might expect general exis tence results were difficult to establish for the problems which arose. Indeed until the early 1990's only very special examples were examined and these examples were usually tackled using some special device, which was usually only applicable to the particular problem under investigation. However in the 1990's new results in inequality and fixed point theory were used to present a very general existence theory for singular problems. This mono graph presents an up to date account of the literature on singular problems. One of our aims also is to present recent theory on singular differential and integral equations to a new and wider audience. The book presents a compact, thorough, and self-contained account for singular problems. An important feature of this book is that we illustrate how easily the theory can be applied to discuss many real world examples of current interest. In Chapter 1 we study differential equations which are singular in the independent variable. We begin with some standard notation in Section 1. 2 and introduce LP-Caratheodory functions. Some fixed point theorems, the Arzela- Ascoli theorem and Banach's theorem are also stated here.


Techniques of Functional Analysis for Differential and Integral Equations

Techniques of Functional Analysis for Differential and Integral Equations

Author: Paul Sacks

Publisher: Academic Press

Published: 2017-05-16

Total Pages: 322

ISBN-13: 0128114576

DOWNLOAD EBOOK

Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics


Principles of Differential and Integral Equations

Principles of Differential and Integral Equations

Author: C. Corduneanu

Publisher: American Mathematical Soc.

Published: 1977-01-30

Total Pages: 218

ISBN-13: 0821846221

DOWNLOAD EBOOK

In summary, the author has provided an elegant introduction to important topics in the theory of ordinary differential equations and integral equations. -- Mathematical Reviews This book is intended for a one-semester course in differential and integral equations for advanced undergraduates or beginning graduate students, with a view toward preparing the reader for graduate-level courses on more advanced topics. There is some emphasis on existence, uniqueness, and the qualitative behavior of solutions. Students from applied mathematics, physics, and engineering will find much of value in this book. The first five chapters cover ordinary differential equations. Chapter 5 contains a good treatment of the stability of ODEs. The next four chapters cover integral equations, including applications to second-order differential equations. Chapter 7 is a concise introduction to the important Fredholm theory of linear integral equations. The final chapter is a well-selected collection of fascinating miscellaneous facts about differential and integral equations. The prerequisites are a good course in advanced calculus, some preparation in linear algebra, and a reasonable acquaintance with elementary complex analysis. There are exercises throughout the text, with the more advanced of them providing good challenges to the student.


Lectures on Differential and Integral Equations

Lectures on Differential and Integral Equations

Author: K?saku Yoshida

Publisher: Courier Corporation

Published: 1991-01-01

Total Pages: 242

ISBN-13: 9780486666792

DOWNLOAD EBOOK

Lucid, self-contained exposition of theory of ordinary differential equations and integral equations. Boundary value problem of second order linear ordinary differential equations, Fredholm integral equations, many other topics. Bibliography. 1960 edition.


Handbook of Integral Equations

Handbook of Integral Equations

Author: Andrei D. Polyanin

Publisher: CRC Press

Published: 2008-02-12

Total Pages: 1143

ISBN-13: 0203881052

DOWNLOAD EBOOK

Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa


Positive Solutions of Differential, Difference and Integral Equations

Positive Solutions of Differential, Difference and Integral Equations

Author: R.P. Agarwal

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 425

ISBN-13: 9401591717

DOWNLOAD EBOOK

In analysing nonlinear phenomena many mathematical models give rise to problems for which only nonnegative solutions make sense. In the last few years this discipline has grown dramatically. This state-of-the-art volume offers the authors' recent work, reflecting some of the major advances in the field as well as the diversity of the subject. Audience: This volume will be of interest to graduate students and researchers in mathematical analysis and its applications, whose work involves ordinary differential equations, finite differences and integral equations.


The Classical Theory of Integral Equations

The Classical Theory of Integral Equations

Author: Stephen M. Zemyan

Publisher: Springer Science & Business Media

Published: 2012-07-10

Total Pages: 350

ISBN-13: 0817683496

DOWNLOAD EBOOK

The Classical Theory of Integral Equations is a thorough, concise, and rigorous treatment of the essential aspects of the theory of integral equations. The book provides the background and insight necessary to facilitate a complete understanding of the fundamental results in the field. With a firm foundation for the theory in their grasp, students will be well prepared and motivated for further study. Included in the presentation are: A section entitled Tools of the Trade at the beginning of each chapter, providing necessary background information for comprehension of the results presented in that chapter; Thorough discussions of the analytical methods used to solve many types of integral equations; An introduction to the numerical methods that are commonly used to produce approximate solutions to integral equations; Over 80 illustrative examples that are explained in meticulous detail; Nearly 300 exercises specifically constructed to enhance the understanding of both routine and challenging concepts; Guides to Computation to assist the student with particularly complicated algorithmic procedures. This unique textbook offers a comprehensive and balanced treatment of material needed for a general understanding of the theory of integral equations by using only the mathematical background that a typical undergraduate senior should have. The self-contained book will serve as a valuable resource for advanced undergraduate and beginning graduate-level students as well as for independent study. Scientists and engineers who are working in the field will also find this text to be user friendly and informative.