The literature on order statistics and inferenc eis quite extensive and covers a large number of fields ,but most of it is dispersed throughout numerous publications. This volume is the consolidtion of the most important results and places an emphasis on estimation. Both theoretical and computational procedures are presented to meet the needs of researchers, professionals, and students. The methods of estimation discussed are well-illustrated with numerous practical examples from both the physical and life sciences, including sociology,psychology,a nd electrical and chemical engineering. A complete, comprehensive bibliography is included so the book can be used both aas a text and reference.
This updated classic text will aid readers in understanding much of the current literature on order statistics: a flourishing field of study that is essential for any practising statistician and a vital part of the training for students in statistics. Written in a simple style that requires no advanced mathematical or statistical background, the book introduces the general theory of order statistics and their applications. The book covers topics such as distribution theory for order statistics from continuous and discrete populations, moment relations, bounds and approximations, order statistics in statistical inference and characterisation results, and basic asymptotic theory. There is also a short introduction to record values and related statistics. The authors have updated the text with suggestions for further reading that may be used for self-study. Written for advanced undergraduate and graduate students in statistics and mathematics, practising statisticians, engineers, climatologists, economists, and biologists.
This volume provides an up-to-date coverage of the theory and applications of ordered random variables and their functions. Furthermore, it develops the distribution theory of OS systematically. Applications include procedures for the treatment of outliers and other data analysis techniques. Even when chapter and section headings are the same as in OSII, there are appreciable changes, mostly additions, with some obvious deletions. Parts of old Ch. 7, for example, are prime candidates for omission. Appendices are designed to help collate tables, computer algorithms, and software, as well as to compile related monographs on the subject matter. Extensive exercise sets will continue, many of them replaced by newer ones.
This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.
The purpose of this book is to honor the fundamental contributions to many different areas of statistics made by Barry Arnold. Distinguished and active researchers highlight some of the recent developments in statistical distribution theory, order statistics and their properties, as well as inferential methods associated with them. Applications to survival analysis, reliability, quality control, and environmental problems are emphasized.
This book offers a brief course in statistical inference that requires only a basic familiarity with probability and matrix and linear algebra. Ninety problems with solutions make it an ideal choice for self-study as well as a helpful review of a wide-ranging topic with important uses to professionals in business, government, public administration, and other fields. 2011 edition.
;Contents: Isotonic regression; Estimation under order restrictions; Testing the equality of ordered means--likelihood ratio tests in the normal case; Testing the equality of ordered means--extensions and generalizations; Estimation of distributions; Isotonic tests for goodness of fit; Conditional expectation given a sigma-lattice.
Introductory Statistical Inference develops the concepts and intricacies of statistical inference. With a review of probability concepts, this book discusses topics such as sufficiency, ancillarity, point estimation, minimum variance estimation, confidence intervals, multiple comparisons, and large-sample inference. It introduces techniques of two-stage sampling, fitting a straight line to data, tests of hypotheses, nonparametric methods, and the bootstrap method. It also features worked examples of statistical principles as well as exercises with hints. This text is suited for courses in probability and statistical inference at the upper-level undergraduate and graduate levels.
Intended as a text for the postgraduate students of statistics, this well-written book gives a complete coverage of Estimation theory and Hypothesis testing, in an easy-to-understand style. It is the outcome of the authors’ teaching experience over the years. The text discusses absolutely continuous distributions and random sample which are the basic concepts on which Statistical Inference is built up, with examples that give a clear idea as to what a random sample is and how to draw one such sample from a distribution in real-life situations. It also discusses maximum-likelihood method of estimation, Neyman’s shortest confidence interval, classical and Bayesian approach. The difference between statistical inference and statistical decision theory is explained with plenty of illustrations that help students obtain the necessary results from the theory of probability and distributions, used in inference.
This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.