Experiments in the field and in the laboratory cannot avoid random error and statistical methods are essential for their efficient design and analysis. Authored by leading experts in key fields, this text provides many examples of SAS code, results, plots and tables, along with a fully supported website.
"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.
Introductory remarks about the experiment and its disign. The regression model and methods of estimation. The ordering of designs and the properties of variaces of estimates. Optimality critaria in the regression model. Iterative computation of optimum desings Design of experiments in particular cases. The functional model and measurements of physical fields.
Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples.
The book dwells mainly on the optimality aspects of mixture designs. As mixture models are a special case of regression models, a general discussion on regression designs has been presented, which includes topics like continuous designs, de la Garza phenomenon, Loewner order domination, Equivalence theorems for different optimality criteria and standard optimality results for single variable polynomial regression and multivariate linear and quadratic regression models. This is followed by a review of the available literature on estimation of parameters in mixture models. Based on recent research findings, the volume also introduces optimal mixture designs for estimation of optimum mixing proportions in different mixture models, which include Scheffé’s quadratic model, Darroch-Waller model, log- contrast model, mixture-amount models, random coefficient models and multi-response model. Robust mixture designs and mixture designs in blocks have been also reviewed. Moreover, some applications of mixture designs in areas like agriculture, pharmaceutics and food and beverages have been presented. Familiarity with the basic concepts of design and analysis of experiments, along with the concept of optimality criteria are desirable prerequisites for a clear understanding of the book. It is likely to be helpful to both theoreticians and practitioners working in the area of mixture experiments.
In real applications most experimental situations are influenced by a large number of different factors. In these settings the design of an experiment leads to challenging optimization problems, even if the underlying relationship can be described by a linear model. Based on recent research, this book introduces the theory of optimum designs for complex models and develops general methods of reduction to marginal problems for large classes of models with relevant interaction structures.
Experiments on patients, processes or plants all have random error, making statistical methods essential for their efficient design and analysis. This book presents the theory and methods of optimum experimental design, making them available through the use of SAS programs. Little previous statistical knowledge is assumed. The first part of the book stresses the importance of models in the analysis of data and introduces least squares fitting and simple optimum experimental designs. The second part presents a more detailed discussion of the general theory and of a wide variety of experiments. The book stresses the use of SAS to provide hands-on solutions for the construction of designs in both standard and non-standard situations. The mathematical theory of the designs is developed in parallel with their construction in SAS, so providing motivation for the development of the subject. Many chapters cover self-contained topics drawn from science, engineering and pharmaceutical investigations, such as response surface designs, blocking of experiments, designs for mixture experiments and for nonlinear and generalized linear models. Understanding is aided by the provision of "SAS tasks" after most chapters as well as by more traditional exercises and a fully supported website. The authors are leading experts in key fields and this book is ideal for statisticians and scientists in academia, research and the process and pharmaceutical industries.
The book is concerned with the statistical theory for locating spatial sensors. It bridges the gap between spatial statistics and optimum design theory. After introductions to those two fields the topics of exploratory designs and designs for spatial trend and variogram estimation are treated. Special attention is devoted to describing new methodologies to cope with the problem of correlated observations.
The first to solve the general problem of sequential tests of statistical hypotheses, the author of this text explains his revolutionary theory of the sequential probability ratio test and its applications. 1947 edition.
Volume III includes more selections of articles that have initiated fundamental changes in statistical methodology. It contains articles published before 1980 that were overlooked in the previous two volumes plus articles from the 1980's - all of them chosen after consulting many of today's leading statisticians.