Modern Control Engineering focuses on the methodologies, principles, approaches, and technologies employed in modern control engineering, including dynamic programming, boundary iterations, and linear state equations. The publication fist ponders on state representation of dynamical systems and finite dimensional optimization. Discussions focus on optimal control of dynamical discrete-time systems, parameterization of dynamical control problems, conjugate direction methods, convexity and sufficiency, linear state equations, transition matrix, and stability of discrete-time linear systems. The text then tackles infinite dimensional optimization, including computations with inequality constraints, gradient method in function space, quasilinearization, computation of optimal control-direct and indirect methods, and boundary iterations. The book takes a look at dynamic programming and introductory stochastic estimation and control. Topics include deterministic multivariable observers, stochastic feedback control, stochastic linear-quadratic control problem, general calculation of optimal control by dynamic programming, and results for linear multivariable digital control systems. The publication is a dependable reference material for engineers and researchers wanting to explore modern control engineering.
This book equips a reader with knowledge necessary for critical analysis of innovations in electric arc furnaces and helps to select the most effective ones and for their successful implementation. The book also covers general issues related to history of development, current state and prospects of steelmaking in Electric Arc Furnaces. Therefore, it can be useful for everybody who studies metallurgy, including students of colleges and universities. The modern concepts of mechanisms of Arc Furnace processes are discussed in the book at the level sufficient to solve practical problems: To help readers lacking knowledge required in the field of heat transfer as well as hydro-gas dynamics, it contains several chapters which provide the required minimum of information in these fields of science. In order to better assess different innovations, the book describes experience of the application of similar innovations in open-hearth furnaces and oxygen converters. Some promising ideas on key issues regarding intensification of the heat, which are of interest for developers of new processes and equipment for Electric Arc Furnaces, are also the concern of the book It should be noted, that carrying out the simplified calculations as distinct from using "off the shelf" programs greatly promotes comprehensive understanding of physical basics of processes and effects produced by various factors. This book gives numerous examples of such calculations performed by means of simplified methods and formulas. Getting familiar with material in this book will allow the reader to perform required calculations on his / her own without any difficulties.
The Utilization of Slag in Civil Infrastructure Construction strives to integrate the theory, research, and practice of slag utilization, including the production and processing of slags. The topics covered include: production and smelting processes for metals; chemical and physical properties of slags; pretreatment and post-treatment technology to enhance slag properties; potential environmental impact; mechanisms of potential expansion; special testing methods and characteristics; slag processing for aggregate and cementitious applications; suitability of slags for use in specific applications; overall properties of materials containing slags; and commercialization and economics. The focus of the book is on slag utilization technology, with a review of the basic properties and an exploration of how its use in the end product will be technically sound, environment-friendly, and economic. - Covers the production, processing, and utilization of a broad range of ferrous, non-ferrous, and non-metallurgical slags - Provides information on applicable methods for a particular slag and its utilization to reduce potential environmental impacts and promote natural resource sustainability - Presents the overall technology of transferring a slag from the waste stream into a useful materials resource - Provides a detailed review of the appropriate utilization of each slag from processing right through to aggregate and cementitious use requirements
The importance of electric arc furnace steelmaking is evident from the escalated world production seen in steel industry. This book presents systematic and complete details on the current state of knowledge about metallurgical processes carried out in the electric arc furnace. It includes principles of construction of electric arc furnaces, applied construction solutions, and their operations (together with auxiliary/supportive devices). Modern technologies of melting of various grades steel are detailed, considering the participation of secondary metallurgy including theoretical backgrounds of chemical processes and reactions. It contains theoretical analysis and results of laboratory, model, and industrial tests. Features: Covers the practical aspects of electric arc furnace steelmaking including technological process. Discusses the operation issues of an electric arc furnace in a technical and technological context. Presents a systematic and complete knowledge about relevant construction solutions and metallurgical processes. Includes practical industrial benchmark indicators in the scope of equipment and technology. Analyses practical case studies from industry. This book aims at researchers, professionals and graduate students in Metallurgical Engineering, Materials Science, Electric Power Supply, Environmental Engineering, and Mechanical Engineering.
Industrialization is the process of social and economic change that transforms a human group from a pre-industrial society into an industrial one. It is a part of a wider modernization process, where social change and economic development are closely related with technological innovation, particularly with the development of large scale energy and metallurgy production. Industrial pollution hurts the environment in a range of ways, and it has a negative impact on human lives and health. Pollutants can kill animals and plants, imbalance ecosystems, degrade air quality radically, damage buildings, and generally degrade quality of life. India is a home to many industries. The sectors include Iron and Steel, Pulp and Paper, Food Processing, Chemicals, Aluminium Industry, Cement, Pharmaceuticals, Machine tools, Surface finishing Industries etc. However, the industrial growth happening at a breakneck speed has resulted in a significant contribution to the toxicity in the environment. Therefore industrial activities should comply with regulatory norms for prevention and control of pollution. There have been many guidelines for the industries and the pollution caused by them. The setup and implementation of these guidelines is a joint responsibility of the central and state governments along with the Central Pollution Control Board to curb such emissions. At present, the control of pollution from industrial installations remains a key issue in India. As urbanisation expands and cities grow the need to deal with the environmental impact becomes even more important to ensure sustainable development. This also entails handling increasing volumes of waste water. Efficient wastewater management exploiting the capacity optimally requires a thorough understanding of the pollutions sources origin and substance. Hence pollution sources must be mapped and identified. This book is designed to assist in the identification and implementation of a cost effective program for industrial pollution monitoring, control, and abatement within the context of institutional and financial constraints present in India. The book is a complete guide on industrial pollution control in important industries like Iron and Steel, Pulp and Paper, Food processing, Chemicals, Aluminium industry, Cement, Pharmaceuticals, Paint industry and many more. This book will be very resourceful to all its readers, students, entrepreneurs, technical institution, scientist, etc. TAGS How to Start Industrial Pollution management Industry in India, Industrial Pollution management Industry in India, Industrial Pollution management & Industrial Pollution management Based Profitable Projects, Industrial Pollution management Projects, Small Industrial Pollution management Projects, Starting a Industrial Pollution management Business, How to Start a Industrial Pollution management Business, Industrial Pollution management Based Small Scale Industries Projects, new small scale ideas in Industrial Pollution management industry, NPCS, Niir, Process technology books, Business consultancy, Business consultant, Project identification and selection, Preparation of Project Profiles, Startup, Business guidance, Business guidance to clients, Startup Project for Industrial Pollution management, Startup Project, Startup ideas, Project for startups, Startup project plan, Business start-up, Business Plan for a Startup Business, Great Opportunity for Startup, Small Start-up Business Project, Start-up Business Plan for Industrial Pollution management, Start Up India, Stand Up India, Industrial Pollution management Making Small Business Manufacturing, Small scale Industrial Pollution management machine, Industrial Pollution management making machine factory, Modern small and cottage scale industries, Profitable small and cottage scale industries, Setting up and opening your Industrial Pollution management Business, How to Start a Industrial Pollution management Business?, How to start a successful Industrial Pollution management business, Small scale Commercial Industrial Pollution management making, Best small and cottage scale industries, Industrial Pollution management Business, Profitable Small Scale Manufacturing, Treatment to Reduce Disposal , Economic Evaluation in Pollution Prevention Programs, Machining and Other Metal Working Operations , Solvents Used for Cleaning, Refrigeration and Other Uses , Metal Plating and Surface Finishing , Painting and Coating , Removal of Paint and Coatings , Motor Oil and Antifreeze, Aluminium Industry, Construction and Demolition, Electric Utilities, Food Processing, Iron and Steel, Petroleum Exploration and Refining, Pharmaceuticals, Pulp and Paper Industry, Air Pollution Control Equipment, How to control industrial pollution, Waste Treatment and Disposal Methods, reuse, recycling, resource recovery, treatment and disposal, types of waste disposal methods, solid waste disposal methods, waste treatment methods, waste disposal problems, Electroplating & Surface Finishing, metal surface finishing process, surface treatment process, environmental regulation, chemical treatment, cleaning and degreasing, cold cleaning, vapor cleaning, precision cleaning, refrigerant, Nickel Plating, chrome plating, cadmium and zinc plating, copper, gold, silver, and tin plating, techniques to reduce plating waste, electro dialysis, powder coating, electrostatic painting, rendering, scalding
The five-volume set IFIP AICT 630, 631, 632, 633, and 634 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2021, held in Nantes, France, in September 2021.* The 378 papers presented were carefully reviewed and selected from 529 submissions. They discuss artificial intelligence techniques, decision aid and new and renewed paradigms for sustainable and resilient production systems at four-wall factory and value chain levels. The papers are organized in the following topical sections: Part I: artificial intelligence based optimization techniques for demand-driven manufacturing; hybrid approaches for production planning and scheduling; intelligent systems for manufacturing planning and control in the industry 4.0; learning and robust decision support systems for agile manufacturing environments; low-code and model-driven engineering for production system; meta-heuristics and optimization techniques for energy-oriented manufacturing systems; metaheuristics for production systems; modern analytics and new AI-based smart techniques for replenishment and production planning under uncertainty; system identification for manufacturing control applications; and the future of lean thinking and practice Part II: digital transformation of SME manufacturers: the crucial role of standard; digital transformations towards supply chain resiliency; engineering of smart-product-service-systems of the future; lean and Six Sigma in services healthcare; new trends and challenges in reconfigurable, flexible or agile production system; production management in food supply chains; and sustainability in production planning and lot-sizing Part III: autonomous robots in delivery logistics; digital transformation approaches in production management; finance-driven supply chain; gastronomic service system design; modern scheduling and applications in industry 4.0; recent advances in sustainable manufacturing; regular session: green production and circularity concepts; regular session: improvement models and methods for green and innovative systems; regular session: supply chain and routing management; regular session: robotics and human aspects; regular session: classification and data management methods; smart supply chain and production in society 5.0 era; and supply chain risk management under coronavirus Part IV: AI for resilience in global supply chain networks in the context of pandemic disruptions; blockchain in the operations and supply chain management; data-based services as key enablers for smart products, manufacturing and assembly; data-driven methods for supply chain optimization; digital twins based on systems engineering and semantic modeling; digital twins in companies first developments and future challenges; human-centered artificial intelligence in smart manufacturing for the operator 4.0; operations management in engineer-to-order manufacturing; product and asset life cycle management for smart and sustainable manufacturing systems; robotics technologies for control, smart manufacturing and logistics; serious games analytics: improving games and learning support; smart and sustainable production and supply chains; smart methods and techniques for sustainable supply chain management; the new digital lean manufacturing paradigm; and the role of emerging technologies in disaster relief operations: lessons from COVID-19 Part V: data-driven platforms and applications in production and logistics: digital twins and AI for sustainability; regular session: new approaches for routing problem solving; regular session: improvement of design and operation of manufacturing systems; regular session: crossdock and transportation issues; regular session: maintenance improvement and lifecycle management; regular session: additive manufacturing and mass customization; regular session: frameworks and conceptual modelling for systems and services efficiency; regular session: optimization of production and transportation systems; regular session: optimization of supply chain agility and reconfigurability; regular session: advanced modelling approaches; regular session: simulation and optimization of systems performances; regular session: AI-based approaches for quality and performance improvement of production systems; and regular session: risk and performance management of supply chains *The conference was held online.