The purpose of this paper was to model, with the help of neutrosophic fuzzy numbers, the optimal financial asset portfolios, offering additional information to those investing in the capital market. The optimal neutrosophic portfolios are those categories of portfolios consisting of two or more financial assets, modeled using neutrosophic triangular numbers, that allow for the determination of financial performance indicators, respectively the neutrosophic average, the neutrosophic risk, for each financial asset, and the neutrosophic covariance as well as the determination of the portfolio return, respectively of the portfolio risk.
This research sets the basis for modeling the performance indicators of financial assets using triangular neutrosophic fuzzy numbers. This type of number allows for the modeling of financial assets performance indicators by taking into consideration all the possible scenarios of their achievement. The key performance indicators (KPIs) modeled with the help of triangular fuzzy neutrosophic numbers are the return on financial assets, the financial assets risk, and the covariance between financial assets.
Papers on neutrosophic and plithogenic sets, logics, probabilities and statistics, on NeutroAlgebra and AntiAlgebra, NeutroGeometry and AntiGeometry, SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra, etc…
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
In a world of chaotic alignments, traditional logic with its strict boundaries of truth and falsity has not imbued itself with the capability of reflecting the reality. Despite various attempts to reorient logic, there has remained an essential need for an alternative system that could infuse into itself a representation of the real world. Out of this need arose the system of Neutrosophy (the philosophy of neutralities, introduced by FLORENTIN SMARANDACHE), and its connected logic Neutrosophic Logic, which is a further generalization of the theory of Fuzzy Logic. In this book we study the concepts of Fuzzy Cognitive Maps (FCMs) and their Neutrosophic analogue, the Neutrosophic Cognitive Maps (NCMs). Fuzzy Cognitive Maps are fuzzy structures that strongly resemble neural networks, and they have powerful and far-reaching consequences as a mathematical tool for modeling complex systems. Neutrosophic Cognitive Maps are generalizations of FCMs, and their unique feature is the ability to handle indeterminacy in relations between two concepts thereby bringing greater sensitivity into the results. Some of the varied applications of FCMs and NCMs which has been explained by us, in this book, include: modeling of supervisory systems; design of hybrid models for complex systems; mobile robots and in intimate technology such as office plants; analysis of business performance assessment; formalism debate and legal rules; creating metabolic and regulatory network models; traffic and transportation problems; medical diagnostics; simulation of strategic planning process in intelligent systems; specific language impairment; web-mining inference application; child labor problem; industrial relations: between employer and employee, maximizing production and profit; decision support in intelligent intrusion detection system; hyper-knowledge representation in strategy formation; female infanticide; depression in terminally ill patients and finally, in the theory of community mobilization and women empowerment relative to the AIDS epidemic.
This edited book provides a platform to discuss the state-of-the-art developments associated with traditional and advanced single-/multi-objective criteria optimization methods for addressing problems of performance enhancement of the products and systems design. The book in detail discusses the core ideas, underlying principles, mathematical formulations, critical reviews and experimentations, and solutions to complex problems from within the domains such as mechanical engineering design and manufacturing, fault detection and diagnosis, control systems, financial systems, machine learning in medical image processing as well as problems from operations research domain. It will serve as a valuable reference to academicians and industry practitioners involved in improving the efficiency, cost, performance, and durability of the products and systems. The chapters in this book may further give impetus to explore new avenues leading towards multidisciplinary research discussions associated with the resilience and sustainability of the existing systems.