A revised and expanded advanced-undergraduate/graduate text (first ed., 1978) about optimization algorithms for problems that can be formulated on graphs and networks. This edition provides many new applications and algorithms while maintaining the classic foundations on which contemporary algorithm
A revised and expanded advanced-undergraduate/graduate text (first ed., 1978) about optimization algorithms for problems that can be formulated on graphs and networks. This edition provides many new applications and algorithms while maintaining the classic foundations on which contemporary algorithm
The second edition of this popular book presents the theory of graphs from an algorithmic viewpoint. The authors present the graph theory in a rigorous, but informal style and cover most of the main areas of graph theory. The ideas of surface topology are presented from an intuitive point of view. We have also included a discussion on linear programming that emphasizes problems in graph theory. The text is suitable for students in computer science or mathematics programs. ?
This book presents open optimization problems in graph theory and networks. Each chapter reflects developments in theory and applications based on Gregory Gutin’s fundamental contributions to advanced methods and techniques in combinatorial optimization. Researchers, students, and engineers in computer science, big data, applied mathematics, operations research, algorithm design, artificial intelligence, software engineering, data analysis, industrial and systems engineering will benefit from the state-of-the-art results presented in modern graph theory and its applications to the design of efficient algorithms for optimization problems. Topics covered in this work include: · Algorithmic aspects of problems with disjoint cycles in graphs · Graphs where maximal cliques and stable sets intersect · The maximum independent set problem with special classes · A general technique for heuristic algorithms for optimization problems · The network design problem with cut constraints · Algorithms for computing the frustration index of a signed graph · A heuristic approach for studying the patrol problem on a graph · Minimum possible sum and product of the proper connection number · Structural and algorithmic results on branchings in digraphs · Improved upper bounds for Korkel--Ghosh benchmark SPLP instances
Covering network designs, discrete convex analysis, facility location and clustering problems, matching games, and parameterized complexity, this book discusses theoretical aspects of combinatorial optimization and graph algorithms. Contributions are by renowned researchers who attended NII Shonan meetings on this essential topic. The collection contained here provides readers with the outcome of the authors’ research and productive meetings on this dynamic area, ranging from computer science and mathematics to operations research. Networks are ubiquitous in today's world: the Web, online social networks, and search-and-query click logs can lead to a graph that consists of vertices and edges. Such networks are growing so fast that it is essential to design algorithms to work for these large networks. Graph algorithms comprise an area in computer science that works to design efficient algorithms for networks. Here one can work on theoretical or practical problems where implementation of an algorithm for large networks is needed. In two of the chapters, recent results in graph matching games and fixed parameter tractability are surveyed. Combinatorial optimization is an intersection of operations research and mathematics, especially discrete mathematics, which deals with new questions and new problems, attempting to find an optimum object from a finite set of objects. Most problems in combinatorial optimization are not tractable (i.e., NP-hard). Therefore it is necessary to design an approximation algorithm for them. To tackle these problems requires the development and combination of ideas and techniques from diverse mathematical areas including complexity theory, algorithm theory, and matroids as well as graph theory, combinatorics, convex and nonlinear optimization, and discrete and convex geometry. Overall, the book presents recent progress in facility location, network design, and discrete convex analysis.
The fusion between graph theory and combinatorial optimization has led to theoretically profound and practically useful algorithms, yet there is no book that currently covers both areas together. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms is the first to present a unified, comprehensive treatment of both graph theory and c
In the past few decades, there has been a large amount of work on algorithms for linear network flow problems, special classes of network problems such as assignment problems (linear and quadratic), Steiner tree problem, topology network design and nonconvex cost network flow problems.Network optimization problems find numerous applications in transportation, in communication network design, in production and inventory planning, in facilities location and allocation, and in VLSI design.The purpose of this book is to cover a spectrum of recent developments in network optimization problems, from linear networks to general nonconvex network flow problems./a
Linear Network Optimization presents a thorough treatment of classical approaches to network problems such as shortest path, max-flow, assignment, transportation, and minimum cost flow problems.