This book offers a broad, in-depth overview that reflects the requirements, possibilities and limits of mathematical optimization and, especially, stochastic optimization in the energy industry.
In today’s society, modern power grids are driven closer to transfer capacities due to increased consumption and power transfers, endangering the security of the systems. Providing methods in controlling variables to minimize costs, transmission loss, and voltage deviation of power system operation yields valuable economic information and insight into power flow. Optimal Power Flow Using Evolutionary Algorithms provides emerging research exploring the theoretical and practical aspects of optimizing power system operation through advanced electronic power devices. Featuring coverage on a broad range of topics such as hybridization algorithm, power system modeling, and transmission systems, this book is ideally designed for engineers, power system developers, academicians, and researchers seeking current research on emerging techniques in achieving quality power under normal operating conditions.
The use of optimization algorithms has seen an emergence in various professional fields due to its ability to process data and information in an efficient and productive manner. Combining computational intelligence with these algorithms has created a trending subject of research on how much more beneficial intelligent-inspired algorithms can be within companies and organizations. As modern theories and applications are continually being developed in this area, professionals are in need of current research on how intelligent algorithms are advancing in the real world. TheHandbook of Research on Advancements of Swarm Intelligence Algorithms for Solving Real-World Problems is a pivotal reference source that provides vital research on the development of swarm intelligence algorithms and their implementation into current issues. While highlighting topics such as multi-agent systems, bio-inspired computing, and evolutionary programming, this publication explores various concepts and theories of swarm intelligence and outlines future directions of development. This book is ideally designed for IT specialists, researchers, academicians, engineers, developers, practitioners, and students seeking current research on the real-world applications of intelligent algorithms.
A new edition of the classic text explaining the fundamentals of competitive electricity markets—now updated to reflect the evolution of these markets and the large scale deployment of generation from renewable energy sources The introduction of competition in the generation and retail of electricity has changed the ways in which power systems function. The design and operation of successful competitive electricity markets requires a sound understanding of both power systems engineering and underlying economic principles of a competitive market. This extensively revised and updated edition of the classic text on power system economics explains the basic economic principles underpinning the design, operation, and planning of modern power systems in a competitive environment. It also discusses the economics of renewable energy sources in electricity markets, the provision of incentives, and the cost of integrating renewables in the grid. Fundamentals of Power System Economics, Second Edition looks at the fundamental concepts of microeconomics, organization, and operation of electricity markets, market participants’ strategies, operational reliability and ancillary services, network congestion and related LMP and transmission rights, transmission investment, and generation investment. It also expands the chapter on generation investments—discussing capacity mechanisms in more detail and the need for capacity markets aimed at ensuring that enough generation capacity is available when renewable energy sources are not producing due to lack of wind or sun. Retains the highly praised first edition’s focus and philosophy on the principles of competitive electricity markets and application of basic economics to power system operating and planning Includes an expanded chapter on power system operation that addresses the challenges stemming from the integration of renewable energy sources Addresses the need for additional flexibility and its provision by conventional generation, demand response, and energy storage Discusses the effects of the increased uncertainty on system operation Broadens its coverage of transmission investment and generation investment Updates end-of-chapter problems and accompanying solutions manual Fundamentals of Power System Economics, Second Edition is essential reading for graduate and undergraduate students, professors, practicing engineers, as well as all others who want to understand how economics and power system engineering interact.
This book explores how developing solutions with heuristic tools offers two major advantages: shortened development time and more robust systems. It begins with an overview of modern heuristic techniques and goes on to cover specific applications of heuristic approaches to power system problems, such as security assessment, optimal power flow, power system scheduling and operational planning, power generation expansion planning, reactive power planning, transmission and distribution planning, network reconfiguration, power system control, and hybrid systems of heuristic methods.
This book discusses the major aspects of load flow, optimization, optimal load flow, and culminates in modern heuristic optimization techniques and evolutionary programming. In the deregulated environment, the economic provision of electrical power to consumers requires knowledge of maintaining a certain power quality and load flow. Many case studies and practical examples are included to emphasize real-world applications. The problems at the end of each chapter can be solved by hand calculations without having to use computer software. The appendices are devoted to calculations of line and cable constants, and solutions to the problems are included throughout the book.
Optimization of Power System Operation, 2nd Edition, offers a practical, hands-on guide to theoretical developments and to the application of advanced optimization methods to realistic electric power engineering problems. The book includes: New chapter on Application of Renewable Energy, and a new chapter on Operation of Smart Grid New topics include wheeling model, multi-area wheeling, and the total transfer capability computation in multiple areas Continues to provide engineers and academics with a complete picture of the optimization of techniques used in modern power system operation
Optimization techniques have developed into a significant area concerning industrial, economics, business, and financial systems. With the development of engineering and financial systems, modern optimization has played an important role in service-centered operations and as such has attracted more attention to this field. Meta-heuristic hybrid optimization is a newly development mathematical framework based optimization technique. Designed by logicians, engineers, analysts, and many more, this technique aims to study the complexity of algorithms and problems. Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance explores the emerging study of meta-heuristics optimization algorithms and methods and their role in innovated real world practical applications. This book is a collection of research on the areas of meta-heuristics optimization algorithms in engineering, business, economics, and finance and aims to be a comprehensive reference for decision makers, managers, engineers, researchers, scientists, financiers, and economists as well as industrialists.
Classical and Recent Aspects of Power System Optimization presents conventional and meta-heuristic optimization methods and algorithms for power system studies. The classic aspects of optimization in power systems, such as optimal power flow, economic dispatch, unit commitment and power quality optimization are covered, as are issues relating to distributed generation sizing, allocation problems, scheduling of renewable resources, energy storage, power reserve based problems, efficient use of smart grid capabilities, and protection studies in modern power systems. The book brings together innovative research outcomes, programs, algorithms and approaches that consolidate the present state and future challenges for power. - Analyzes and compares several aspects of optimization for power systems which has never been addressed in one reference - Details real-life industry application examples for each chapter (e.g. energy storage and power reserve problems) - Provides practical training on theoretical developments and application of advanced methods for optimum electrical energy for realistic engineering problems
This book offers a thorough overview of the most popular and researched meta-heuristic optimization techniques and nature-inspired algorithms. Their wide applicability makes them a hot research topic and an effi cient tool for the solution of complex optimization problems in various fi elds of sciences, engineering, and in numerous industries.