The First Comprehensive Book on the SubjectFocusing on the underlying structure of a system, Optimal Design of Queueing Systems explores how to set the parameters of a queueing system, such as arrival and service rates, before putting it into operation. It considers various objectives, comparing individually optimal (Nash equilibrium), socially opt
The First Comprehensive Book on the Subject Focusing on the underlying structure of a system, Optimal Design of Queueing Systems explores how to set the parameters of a queueing system, such as arrival and service rates, before putting it into operation. It considers various objectives, comparing individually optimal (Nash equilibrium), socially optimal, class optimal, and facility optimal flow allocations. After an introduction to basic design models, the book covers the optimal arrival rate model for a single-facility, single-class queue as well as dynamic algorithms for finding individually or socially optimal arrival rates and prices. It then examines several special cases of multiclass queues, presents models in which the service rate is a decision variable, and extends models and techniques to multifacility queueing systems. Focusing on networks of queues, the final chapters emphasize the qualitative properties of optimal solutions. Written by a long-time, recognized researcher on models for the optimal design and control of queues and networks of queues, this book frames the issues in the general setting of a queueing system. It shows how design models can control flow to achieve a variety of objectives.
This book is the first of a series which focuses on the interpolation and extrapolation of optimal designs, an area with significant applications in engineering, physics, chemistry and most experimental fields. In this volume, the authors emphasize the importance of problems associated with the construction of design. After a brief introduction on how the theory of optimal designs meets the theory of the uniform approximation of functions, the authors introduce the basic elements to design planning and link the statistical theory of optimal design and the theory of the uniform approximation of functions. The appendices provide the reader with material to accompany the proofs discussed throughout the book.
Flexible manufacturing systems are complex production systems with considerable high investment costs. This book intends to show the reader how the design of such a system can be optimized. Thereby it addresses the academic world in management science and industrial engineering as well as system planners in industry. First the design problems are analysed in detail and a planning concept is presented. Afterwards possible tools for the design process are described, as there are: mathematical programming, queueing networks, computer simulation, perturbation analysis, petri nets, group technology, and knowledge based systems. The major part of the book, however, concerns the description of existing optimization models based on mathematical programming. Each model is explained and discussed in detail and for new models, developed by the author, numerical examples are given. Finally some distinct guidelines are presented which help the system planners to select the appropriate model for their planning problems.
To Queue Or Not To Queue: Equilibrium Behavior in Queueing Systems focuses on the highly interesting, practical viewpoint of customer behavior and its effect on the performance of the queueing system. The book's objectives are threefold: (1) It is a comprehensive survey of the literature on equilibrium behavior of customers and servers in queueing systems. The literature is rich and considerable, but lacks continuity. This book will provide the needed continuity and cover some issues that have not been adequately treated. (2) In addition, it will examine the known results of the field, classify them and identify where and how they relate to each other. (3) And finally, it seeks to fill a number of the gaps in the literature with new results while explicitly outlining open problems in other areas. With this book, it is the authors' paramount purpose is to motivate further research and to help researchers identify new and interesting open problems.
Understand the Strategic Behavior in Queueing SystemsRational Queueing provides one of the first unified accounts of the dynamic aspects involved in the strategic behavior in queues. It explores the performance of queueing systems where multiple agents, such as customers, servers, and central managers, all act but often in a noncooperative manner.T
This book provides a complete overview of production systems and describes the best approaches to analyze their performance. Written by experts in the field, this work also presents numerous techniques that can be used to describe, model, and optimize the performance of various types of production lines. The book is intended for researchers, production managers, and graduate students in industrial, mechanical, and systems engineering.
This book is dedicated to Jinhua Cao on the occasion of his 80th birthday. Jinhua Cao is one of the most famous reliability theorists. His main contributions include: published over 100 influential scientific papers; published an interesting reliability book in Chinese in 1986, which has greatly influenced the reliability of education, academic research and engineering applications in China; initiated and organized Reliability Professional Society of China (the first part of Operations Research Society of China) since 1981. The high admiration that Professor Cao enjoys in the reliability community all over the world was witnessed by the enthusiastic response of each contributor in this book. The contributors are leading researchers with diverse research perspectives. The research areas of the book iclude a broad range of topics related to reliability models, queueing theory, manufacturing systems, supply chain finance, risk management, Markov decision processes, blockchain and so forth. The book consists of a brief Preface describing the main achievements of Professor Cao; followed by congratulations from Professors Way Kuo and Wei Wayne Li, and by Operations Research Society of China, and Reliability Professional Society of China; and further followed by 25 articles roughly grouped together. Most of the articles are written in a style understandable to a wide audience. This book is useful to anyone interested in recent developments in reliability, network security, system safety, and their stochastic modeling and analysis.
Sample-Path Analysis of Queueing Systems uses a deterministic (sample-path) approach to analyze stochastic systems, primarily queueing systems and more general input-output systems. Among other topics of interest it deals with establishing fundamental relations between asymptotic frequencies and averages, pathwise stability, and insensitivity. These results are utilized to establish useful performance measures. The intuitive deterministic approach of this book will give researchers, teachers, practitioners, and students better insights into many results in queueing theory. The simplicity and intuitive appeal of the arguments will make these results more accessible, with no sacrifice of mathematical rigor. Recent topics such as pathwise stability are also covered in this context. The book consistently takes the point of view of focusing on one sample path of a stochastic process. Hence, it is devoted to providing pure sample-path arguments. With this approach it is possible to separate the issue of the validity of a relationship from issues of existence of limits and/or construction of stationary framework. Generally, in many cases of interest in queueing theory, relations hold, assuming limits exist, and the proofs are elementary and intuitive. In other cases, proofs of the existence of limits will require the heavy machinery of stochastic processes. The authors feel that sample-path analysis can be best used to provide general results that are independent of stochastic assumptions, complemented by use of probabilistic arguments to carry out a more detailed analysis. This book focuses on the first part of the picture. It does however, provide numerous examples that invoke stochastic assumptions, which typically are presented at the ends of the chapters.