Optimal Control Applied to Biological Models

Optimal Control Applied to Biological Models

Author: Suzanne Lenhart

Publisher: CRC Press

Published: 2007-05-07

Total Pages: 272

ISBN-13: 1584886404

DOWNLOAD EBOOK

From economics and business to the biological sciences to physics and engineering, professionals successfully use the powerful mathematical tool of optimal control to make management and strategy decisions. Optimal Control Applied to Biological Models thoroughly develops the mathematical aspects of optimal control theory and provides insight into the application of this theory to biological models. Focusing on mathematical concepts, the book first examines the most basic problem for continuous time ordinary differential equations (ODEs) before discussing more complicated problems, such as variations of the initial conditions, imposed bounds on the control, multiple states and controls, linear dependence on the control, and free terminal time. In addition, the authors introduce the optimal control of discrete systems and of partial differential equations (PDEs). Featuring a user-friendly interface, the book contains fourteen interactive sections of various applications, including immunology and epidemic disease models, management decisions in harvesting, and resource allocation models. It also develops the underlying numerical methods of the applications and includes the MATLAB® codes on which the applications are based. Requiring only basic knowledge of multivariable calculus, simple ODEs, and mathematical models, this text shows how to adjust controls in biological systems in order to achieve proper outcomes.


An Introduction to Optimal Control Problems in Life Sciences and Economics

An Introduction to Optimal Control Problems in Life Sciences and Economics

Author: Sebastian Aniţa

Publisher: Springer Science & Business Media

Published: 2011-05-05

Total Pages: 241

ISBN-13: 0817680985

DOWNLOAD EBOOK

Combining control theory and modeling, this textbook introduces and builds on methods for simulating and tackling concrete problems in a variety of applied sciences. Emphasizing "learning by doing," the authors focus on examples and applications to real-world problems. An elementary presentation of advanced concepts, proofs to introduce new ideas, and carefully presented MATLAB® programs help foster an understanding of the basics, but also lead the way to new, independent research. With minimal prerequisites and exercises in each chapter, this work serves as an excellent textbook and reference for graduate and advanced undergraduate students, researchers, and practitioners in mathematics, physics, engineering, computer science, as well as biology, biotechnology, economics, and finance.


Advances in Applied Nonlinear Optimal Control

Advances in Applied Nonlinear Optimal Control

Author: Gerasimos Rigatos

Publisher: Cambridge Scholars Publishing

Published: 2020-11-19

Total Pages: 741

ISBN-13: 1527562468

DOWNLOAD EBOOK

This volume discusses advances in applied nonlinear optimal control, comprising both theoretical analysis of the developed control methods and case studies about their use in robotics, mechatronics, electric power generation, power electronics, micro-electronics, biological systems, biomedical systems, financial systems and industrial production processes. The advantages of the nonlinear optimal control approaches which are developed here are that, by applying approximate linearization of the controlled systems’ state-space description, one can avoid the elaborated state variables transformations (diffeomorphisms) which are required by global linearization-based control methods. The book also applies the control input directly to the power unit of the controlled systems and not on an equivalent linearized description, thus avoiding the inverse transformations met in global linearization-based control methods and the potential appearance of singularity problems. The method adopted here also retains the known advantages of optimal control, that is, the best trade-off between accurate tracking of reference setpoints and moderate variations of the control inputs. The book’s findings on nonlinear optimal control are a substantial contribution to the areas of nonlinear control and complex dynamical systems, and will find use in several research and engineering disciplines and in practical applications.


Control Theory and Systems Biology

Control Theory and Systems Biology

Author: Pablo A. Iglesias

Publisher: MIT Press

Published: 2010

Total Pages: 359

ISBN-13: 0262013347

DOWNLOAD EBOOK

A survey of how engineering techniques from control and systems theory can be used to help biologists understand the behavior of cellular systems.


Modeling Paradigms and Analysis of Disease Transmission Models

Modeling Paradigms and Analysis of Disease Transmission Models

Author: Abba B. Gumel

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 286

ISBN-13: 0821843842

DOWNLOAD EBOOK

This volume stems from two DIMACS activities, the U.S.-Africa Advanced Study Institute and the DIMACS Workshop, both on Mathematical Modeling of Infectious Diseases in Africa, held in South Africa in the summer of 2007. It contains both tutorial papers and research papers. Students and researchers should find the papers on modeling and analyzing certain diseases currently affecting Africa very informative. In particular, they can learn basic principles of disease modeling and stability from the tutorial papers where continuous and discrete time models, optimal control, and stochastic features are introduced.


Nonlinear and Optimal Control Systems

Nonlinear and Optimal Control Systems

Author: Thomas L. Vincent

Publisher: John Wiley & Sons

Published: 1997-06-23

Total Pages: 584

ISBN-13: 9780471042358

DOWNLOAD EBOOK

Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.


Mathematical Methods in Biology

Mathematical Methods in Biology

Author: J. David Logan

Publisher: John Wiley & Sons

Published: 2009-08-17

Total Pages: 437

ISBN-13: 0470525878

DOWNLOAD EBOOK

A one-of-a-kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book's algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem-solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively class-tested to ensure an easy-to-follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics.


Stochastic Controls

Stochastic Controls

Author: Jiongmin Yong

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 459

ISBN-13: 1461214661

DOWNLOAD EBOOK

As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.