OPTICAL VORTEX AND POINCARÉ ANALYSIS FOR BIOPHYSICAL DYNAMICS

OPTICAL VORTEX AND POINCARÉ ANALYSIS FOR BIOPHYSICAL DYNAMICS

Author:

Publisher:

Published: 2019

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Abstract : Coherent light - such as that from a laser - on interaction with biological tissues, undergoes scattering. This scattered light undergoes interference and the resultant field has randomly added phases and amplitudes. This random interference pattern is known as speckles, and has been the subject of multiple applications, including imaging techniques. These speckle fields inherently contain optical vortices, or phase singularities. These are locations where the intensity (or amplitude) of the interference pattern is zero, and the phase is undefined. In the research presented in this dissertation, dynamic speckle patterns were obtained through computer simulations as well as laboratory setups involving scattering from phantoms and animal tissues. Optical vortices were tracked within these patterns. Novel techniques were applied to relate scattering media dynamics with the temporal evolution of the speckle fields and the optical vortex locations. Parameters, such as optical vortex trail lengths, mobility of optical vortices and charge separation between different types of vortices were introduced and calculated. Mathematical formulations, namely Poincaré descriptors, were employed to analyze the statistics of speckle intensity and optical vortex dynamics. A brief review of the advancements in the understanding and detection of optical vortices is presented. This is followed by the theory behind Poincaré analysis. It is concluded that Poincaré descriptors can be used to characterize the correlation in a data series. Speckle patterns with different dynamic behaviors - such as Brownian and Lorentzian modes of decorrelation between consecutive frames, at varying rates - were studied. It was noted that measuring the optical vortex parameters in a dynamically evolving field, provided insights into the decorrelation characteristics of the scattering medium. As speckle size is a statistical measure of the intensity variation in the field, the use of Poincaré descriptors to estimate speckle size is demonstrated. Additionally, these descriptors differentiate between short- and long-range orders in data. Laser speckle images obtained from flow in fluid phantoms and animal tissues indicated that Poincaré analysis provides an alternate method of quantifying flow.


Vortex Dynamics and Optical Vortices

Vortex Dynamics and Optical Vortices

Author: Hector Perez-De-Tejada

Publisher: BoD – Books on Demand

Published: 2017-03-01

Total Pages: 346

ISBN-13: 9535129295

DOWNLOAD EBOOK

The contents of the book cover a wide variety of topics related to the analysis of the dynamics of vortices and describe the results of experiments, computational modeling and their interpretation. The book contains 13 chapters reaching areas of physics in vortex dynamics and optical vortices including vortices in superfluid atomic gases, vortex laser beams, vortex-antivortex in ferromagnetic hybrids, and optical vortices illumination in chiral nanostructures. Also, discussions are presented on particle motion in vortex flows, on the simulation of vortex-dominated flows, on vortices in saturable media, on achromatic vortices, and on ultraviolet vortices. Fractal light vortices, coherent vortex beams, together with vortices in electric dipole radiation, and spin wave dynamics in magnetic vortices are examined as well.


Vortex Dynamics and Optical Vortices

Vortex Dynamics and Optical Vortices

Author: Hector Perez-de-Tejada

Publisher:

Published: 2017

Total Pages: 344

ISBN-13: 9789535141044

DOWNLOAD EBOOK

The contents of the book cover a wide variety of topics related to the analysis of the dynamics of vortices and describe the results of experiments, computational modeling and their interpretation. The book contains 13 chapters reaching areas of physics in vortex dynamics and optical vortices including vortices in superfluid atomic gases, vortex laser beams, vortex-antivortex in ferromagnetic hybrids, and optical vortices illumination in chiral nanostructures. Also, discussions are presented on particle motion in vortex flows, on the simulation of vortex-dominated flows, on vortices in saturable media, on achromatic vortices, and on ultraviolet vortices. Fractal light vortices, coherent vortex beams, together with vortices in electric dipole radiation, and spin wave dynamics in magnetic vortices are examined as well.


Modern Classical Physics

Modern Classical Physics

Author: Kip S. Thorne

Publisher: Princeton University Press

Published: 2017-09-05

Total Pages: 1551

ISBN-13: 0691159025

DOWNLOAD EBOOK

A groundbreaking text and reference book on twenty-first-century classical physics and its applications This first-year graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available


Elasticity and Fluid Dynamics: Volume 3 of Modern Classical Physics

Elasticity and Fluid Dynamics: Volume 3 of Modern Classical Physics

Author: Kip S. Thorne

Publisher: Princeton University Press

Published: 2021-05-25

Total Pages: 480

ISBN-13: 069121557X

DOWNLOAD EBOOK

A groundbreaking textbook on twenty-first-century fluids and elastic solids and their applications Kip Thorne and Roger Blandford’s monumental Modern Classical Physics is now available in five stand-alone volumes that make ideal textbooks for individual graduate or advanced undergraduate courses on statistical physics; optics; elasticity and fluid dynamics; plasma physics; and relativity and cosmology. Each volume teaches the fundamental concepts, emphasizes modern, real-world applications, and gives students a physical and intuitive understanding of the subject. Elasticity and Fluid Dynamics provides an essential introduction to these subjects. Fluids and elastic solids are everywhere—from Earth’s crust and skyscrapers to ocean currents and airplanes. They are central to modern physics, astrophysics, the Earth sciences, biophysics, medicine, chemistry, engineering, and technology, and this centrality has intensified in recent years—so much so that a basic understanding of the behavior of elastic solids and fluids should be part of the repertoire of every physicist and engineer and almost every other natural scientist. While both elasticity and fluid dynamics involve continuum physics and use similar mathematical tools and modes of reasoning, each subject can be readily understood without the other, and the book allows them to be taught independently, with the first two chapters introducing and covering elasticity and the last six doing the same for fluid dynamics. The book also can serve as supplementary reading for many other courses, including in astrophysics, geophysics, and aerodynamics. Includes many exercise problems Features color figures, suggestions for further reading, extensive cross-references, and a detailed index Optional “Track 2” sections make this an ideal book for a one-quarter or one-semester course in elasticity, fluid dynamics, or continuum physics An online illustration package is available to professors The five volumes, which are available individually as paperbacks and ebooks, are Statistical Physics; Optics; Elasticity and Fluid Dynamics; Plasma Physics; and Relativity and Cosmology.


Geometry, Mechanics, and Dynamics

Geometry, Mechanics, and Dynamics

Author: Dong Eui Chang

Publisher: Springer

Published: 2015-04-16

Total Pages: 506

ISBN-13: 1493924419

DOWNLOAD EBOOK

This book illustrates the broad range of Jerry Marsden’s mathematical legacy in areas of geometry, mechanics, and dynamics, from very pure mathematics to very applied, but always with a geometric perspective. Each contribution develops its material from the viewpoint of geometric mechanics beginning at the very foundations, introducing readers to modern issues via illustrations in a wide range of topics. The twenty refereed papers contained in this volume are based on lectures and research performed during the month of July 2012 at the Fields Institute for Research in Mathematical Sciences, in a program in honor of Marsden's legacy. The unified treatment of the wide breadth of topics treated in this book will be of interest to both experts and novices in geometric mechanics. Experts will recognize applications of their own familiar concepts and methods in a wide variety of fields, some of which they may never have approached from a geometric viewpoint. Novices may choose topics that interest them among the various fields and learn about geometric approaches and perspectives toward those topics that will be new for them as well.


Quantum Evolution

Quantum Evolution

Author: Johnjoe McFadden

Publisher: W. W. Norton & Company

Published: 2002

Total Pages: 356

ISBN-13: 9780393323108

DOWNLOAD EBOOK

Marrying physics and biology, McFadden theorizes that evolution may not be random but directed, and that quantum mechanics endows living organisms with the ability to initiate specific actions, including new mutations. Illustrations.


Recent Advances in Multidisciplinary Applied Physics

Recent Advances in Multidisciplinary Applied Physics

Author: Antonio Mendez-Vilas

Publisher: Elsevier

Published: 2005-09-28

Total Pages: 999

ISBN-13: 008048056X

DOWNLOAD EBOOK

The 1st International Meeting on Applied Physics (APHYS-2003) succeeded in creating a new international forum for applied physics in Europe, with specific interest in the application of techniques, training, and culture of physics to research areas usually associated with other scientific and engineering disciplines.This book contains a selection of peer-reviewed papers presented at APHYS-2003, held in Badajoz (Spain), from 15th to 18th October 2003, which included the following Plenary Lectures:* Nanobiotechnology - Interactions of Cells with Nanofeatured Surfaces and with Nanoparticles* Radiation Protection of Nuclear Workers - Ethical Issues* Chaotic Data Encryption for Optical Communications


Vectorial Optical Fields

Vectorial Optical Fields

Author: Qiwen Zhan

Publisher: World Scientific

Published: 2014

Total Pages: 293

ISBN-13: 981444989X

DOWNLOAD EBOOK

Polarization is a vector nature of light that plays an important role in optical science and engineering. While existing textbook treatments of light assume beams with spatially homogeneous polarization, there is an increasing interest in vectorial optical fields with spatially engineered states of polarization. New effects and phenomena have been predicted and observed for light beams with these unconventional polarization states. This edited review volume aims to provide a comprehensive overview and summarize the latest developments in this important emerging field of optics. This book will cover the fundamentals including mathematical and physical descriptions, experimental generation, manipulation, focusing, propagation, and the applications of the engineered vectorial optical fields in focal field engineering, plasmonic focusing and optical antenna, single molecular imaging, optical tweezers/trapping, as well as optical measurements and instrumentations.