Optical Trapping And Manipulation Of Neutral Particles Using Lasers: A Reprint Volume With Commentaries

Optical Trapping And Manipulation Of Neutral Particles Using Lasers: A Reprint Volume With Commentaries

Author: Arthur Ashkin

Publisher: World Scientific

Published: 2006-12-29

Total Pages: 941

ISBN-13: 9814494348

DOWNLOAD EBOOK

This important volume contains selected papers and extensive commentaries on laser trapping and manipulation of neutral particles using radiation pressure forces. Such techniques apply to a variety of small particles, such as atoms, molecules, macroscopic dielectric particles, living cells, and organelles within cells. These optical methods have had a revolutionary impact on the fields of atomic and molecular physics, biophysics, and many aspects of nanotechnology.In atomic physics, the trapping and cooling of atoms down to nanokelvins and even picokelvin temperatures are possible. These are the lowest temperatures in the universe. This made possible the first demonstration of Bose-Einstein condensation of atomic and molecular vapors. Some of the applications are high precision atomic clocks, gyroscopes, the measurement of gravity, cryptology, atomic computers, cavity quantum electrodynamics and coherent atom lasers.A major application in biophysics is the study of the mechanical properties of the many types of motor molecules, mechanoenzymes, and other macromolecules responsible for the motion of organelles within cells and the locomotion of entire cells. Unique in vitro and in vivo assays study the driving forces, stepping motion, kinetics, and efficiency of these motors as they move along the cell's cytoskeleton. Positional and temporal resolutions have been achieved, making possible the study of RNA and DNA polymerases, as they undergo their various copying, backtracking, and error correcting functions on a single base pair basis.Many applications in nanotechnology involve particle and cell sorting, particle rotation, microfabrication of simple machines, microfluidics, and other micrometer devices. The number of applications continues to grow at a rapid rate.The author is the discoverer of optical trapping and optical tweezers. With his colleagues, he first demonstrated optical levitation, the trapping of atoms, and tweezer trapping and manipulation of living cells and biological particles.This is the only review volume covering the many fields of optical trapping and manipulation. The intention is to provide a selective guide to the literature and to teach how optical traps really work.


Optical Trapping and Manipulation of Neutral Particles Using Lasers

Optical Trapping and Manipulation of Neutral Particles Using Lasers

Author: Arthur Ashkin

Publisher: World Scientific Publishing Company Incorporated

Published: 2006-01-01

Total Pages: 915

ISBN-13: 9789810240585

DOWNLOAD EBOOK

This important volume contains selected papers and commentaries on laser trapping and manipulation of neutral particles using radiation pressure forces. These revolutionary optical techniques apply to atoms, molecules, dielectric particles, living cells and organelles within cells. They have made possible the cooling of atoms to the lowest temperature in the universe, the first demonstration of Bose-Einstein condensation of atomic vapors, the measurement of the driving forces of individual molecular motors, and the observation of their stepping motion. Only simple geometrical optics and semiclassical physics are used to explain the light forces and traps. The author is the discoverer of optical trapping and optical tweezers. With his colleagues he first demonstrated optical levitation, trapping of atoms, and tweezer trapping and manipulation of living cells and biological particles. This is the only review covering the entire scope of optical manipulation. The intention is to provide a selective guide to the literature and teach how optical traps really work.


The Nanobiotechnology Handbook

The Nanobiotechnology Handbook

Author: Yubing Xie

Publisher: CRC Press

Published: 2012-11-16

Total Pages: 692

ISBN-13: 1439838704

DOWNLOAD EBOOK

A thorough overview of nanobiotechnology and its place in advances in applied science and engineering, The Nanobiotechnology Handbook combines contributions from physics, bioorganic and bioinorganic chemistry, molecular and cellular biology, materials science, and medicine as well as from mechanical, electrical, chemical, and biomedical engineering


Fundamentals of Photonics

Fundamentals of Photonics

Author: Bahaa E. A. Saleh

Publisher: John Wiley & Sons

Published: 2020-03-04

Total Pages: 2127

ISBN-13: 1119702119

DOWNLOAD EBOOK

Fundamentals of Photonics A complete, thoroughly updated, full-color third edition Fundamentals of Photonics, Third Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light and matter. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics, such as Fourier optics and holography, photonic-crystal optics, guided-wave and fiber optics, LEDs and lasers, acousto-optic and electro-optic devices, nonlinear optical devices, ultrafast optics, optical interconnects and switches, and optical fiber communications. The third edition features an entirely new chapter on the optics of metals and plasmonic devices. Each chapter contains highlighted equations, exercises, problems, summaries, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest. Each of the twenty-four chapters of the second edition has been thoroughly updated.


Advanced Holography

Advanced Holography

Author: Izabela Naydenova

Publisher: BoD – Books on Demand

Published: 2011-11-09

Total Pages: 392

ISBN-13: 9533077298

DOWNLOAD EBOOK

Advanced Holography - Metrology and Imaging covers digital holographic microscopy and interferometry, including interferometry in the infra red. Other topics include synthetic imaging, the use of reflective spatial light modulators for writing dynamic holograms and image display using holographic screens. Holography is discussed as a vehicle for artistic expression and the use of software for the acquisition of skills in optics and holography is also presented. Each chapter provides a comprehensive introduction to a specific topic, with a survey of developments to date.


Mathematical Optics

Mathematical Optics

Author: Vasudevan Lakshminarayanan

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 630

ISBN-13: 1439869618

DOWNLOAD EBOOK

Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.


The Nobel Prizes 2018

The Nobel Prizes 2018

Author: Karl Grandin

Publisher: World Scientific

Published: 2021-01-05

Total Pages: 470

ISBN-13: 9811219516

DOWNLOAD EBOOK

The Nobel Prizes is the official yearbook of the Nobel Foundation. This edition provides extensive information about the 2018 laureates: their Nobel Prize lectures and their autobiographies, as well as presentation speeches and background about the Nobel festivities.Published on behalf of the Nobel Foundation.


Molecular Beams in Physics and Chemistry

Molecular Beams in Physics and Chemistry

Author: Bretislav Friedrich

Publisher: Springer Nature

Published: 2021-06-19

Total Pages: 639

ISBN-13: 3030639630

DOWNLOAD EBOOK

This Open Access book gives a comprehensive account of both the history and current achievements of molecular beam research. In 1919, Otto Stern launched the revolutionary molecular beam technique. This technique made it possible to send atoms and molecules with well-defined momentum through vacuum and to measure with high accuracy the deflections they underwent when acted upon by transversal forces. These measurements revealed unforeseen quantum properties of nuclei, atoms, and molecules that became the basis for our current understanding of quantum matter. This volume shows that many key areas of modern physics and chemistry owe their beginnings to the seminal molecular beam work of Otto Stern and his school. Written by internationally recognized experts, the contributions in this volume will help experienced researchers and incoming graduate students alike to keep abreast of current developments in molecular beam research as well as to appreciate the history and evolution of this powerful method and the knowledge it reveals.


Generalized Lorenz-Mie Theories

Generalized Lorenz-Mie Theories

Author: Gérard Gouesbet

Publisher: Springer Nature

Published: 2023-06-10

Total Pages: 411

ISBN-13: 3031259491

DOWNLOAD EBOOK

This book explores generalized Lorenz–Mie theories when the illuminating beam is an electromagnetic arbitrary shaped beam relying on the method of separation of variables. Although it particularly focuses on the homogeneous sphere, the book also considers other regular particles. It discusses in detail the methods available for evaluating beam shape coefficients describing the illuminating beam. In addition it features applications used in many fields such as optical particle sizing and, more generally, optical particle characterization, morphology-dependent resonances and the mechanical effects of light for optical trapping, optical tweezers and optical stretchers. Furthermore, it provides various computer programs relevant to the content. In the last years many new developments took place so that a new edition became necessary. This new book now incorporates solutions for many more particle shapes and morphologies, various kinds of illuminating beams, and also to mechanical effects of light, whispering-gallery modes and resonances, and optical particle characterization techniques. In addition, the new book considers localized approximations, on the renewal of the finite series technique, on a new categorization of optical forces, and the study of Bessel beams, Mathieu beams, Laguerre-Gauss beams, frozen waves


Light, Plasmonics and Particles

Light, Plasmonics and Particles

Author: M. Pinar Menguc

Publisher: Elsevier

Published: 2023-05-08

Total Pages: 618

ISBN-13: 0323985343

DOWNLOAD EBOOK

Light, Plasmonics and Particles focuses on the fundamental science and engineering applications of light scattering by particles, aerosols and hydrosols, and of localized plasmonics. The book is intended to be a self-contained and coherent resource volume for graduate students and professionals in the disciplines of materials science, engineering and related disciplines of physics and chemistry. In addition to chapters related to fundamental concepts, it includes detailed discussion of different numerical models, experimental systems and applications. In order to develop new devices, processes and applications, we need to advance our understanding of light-matter interactions. For this purpose, we need to have a firm grasp of electromagnetic wave phenomena, and absorption and scattering of waves by different size and shape geometrical objects. In addition, understanding of tunneling of waves based on electron and lattice vibrations and coupling with the thermal fluctuations to enhance near-field energy transfer mechanisms are required for the development of future energy harvesting devices and sensors. - Reviews the fundamental science, available computational tools, experimental systems, and a wide range of applications of plasmonics - Connects the cross-cutting science of the physics of electromagnetic light scattering by particles, plasmonics and phononic interactions at the electronic, molecular and lattice levels of materials - Reviews applications of light-matter interactions of particles, aerosols, hydrosols and localized plasmonics