Optical System Design, Second Edition

Optical System Design, Second Edition

Author: Robert F. Fischer

Publisher: McGraw Hill Professional

Published: 2008-02-17

Total Pages: 829

ISBN-13: 0071593586

DOWNLOAD EBOOK

Learn advanced optical design techniques from the field's most respected guide Honed for more than 20 years in an SPIE professional course taught by renowned optical systems designer Robert E. Fischer, Optical System Design, Second Edition brings you the latest cutting-edge design techniques and more than 400 detailed diagrams that clearly illustrate every major procedure in optical design. This thoroughly updated resource helps you work better and faster with computer-aided optical design techniques, diffractive optics, and the latest applications, including digital imaging, telecommunications, and machine vision. No need for complex, unnecessary mathematical derivations-instead, you get hundreds of examples that break the techniques down into understandable steps. For twenty-first century optical design without the mystery, the authoritative Optical Systems Design, Second Edition features: Computer-aided design use explained through sample problems Case studies of third-millennium applications in digital imaging, sensors, lasers, machine vision, and more New chapters on optomechanical design, systems analysis, and stray-light suppression New chapter on polarization including lots of really useful information New and expanded chapter on diffractive optics Techniques for getting rid of geometrical aberrations Testing, tolerancing, and manufacturing guidance Intelligent use of aspheric surfaces in optical design Pointers on using off-the-shelf optics Basic optical principles and solutions for common and advanced design problems


OPTICAL SYSTEM DESIGN

OPTICAL SYSTEM DESIGN

Author: Robert Fischer

Publisher: McGraw Hill Professional

Published: 2000-07-21

Total Pages: 577

ISBN-13: 0071500251

DOWNLOAD EBOOK

This classic resource provides a clear, well-illustrated introduction to the essentials of optical design-from basic principles to cutting-edge design methods.


Optical System Design

Optical System Design

Author: Robert E. Fischer

Publisher:

Published: 2008

Total Pages: 624

ISBN-13: 9780819467850

DOWNLOAD EBOOK

An update to the classic 2000 text, this book is written to teach optical design and engineering in a fully unintimidating way using clear and easy-to-understand graphics and explanations. This book is for everyone from program managers to seasoned optical designers and engineers, mechanical engineers, and electrical engineers. Copublished with McGraw-Hill.


Optical Design Fundamentals for Infrared Systems

Optical Design Fundamentals for Infrared Systems

Author: Max J. Riedl

Publisher: SPIE Press

Published: 2001

Total Pages: 206

ISBN-13: 9780819440518

DOWNLOAD EBOOK

The practical, popular 1995 tutorial has been thoroughly revised and updated, reflecting developments in technology and applications during the past decade. New chapters address wave aberrations, thermal effects, design examples, and diamond turning.


Optical System Design

Optical System Design

Author: Rudolf Kingslake

Publisher: Academic Press

Published: 2012-12-02

Total Pages: 334

ISBN-13: 0323141102

DOWNLOAD EBOOK

Optical System Design covers the basic knowledge of optics and the flow of light through an optical system. This book is organized into 16 chapters that deal with various components of an optical system, from light and images to spectroscopic apparatus. The book first discusses the simple components of an optical system, including its light, lens, oblique beams, and photochemical aspects. It then deals with the system's projection, plane mirrors, prisms, magnifying instruments, and telescope. Other components considered are the surveying instruments, mirror imaging systems, photographic optics, and spectroscopic apparatus. This book is of value to undergraduate students with courses in geometrical optics and system design.


Building Electro-Optical Systems

Building Electro-Optical Systems

Author: Philip C. D. Hobbs

Publisher: John Wiley & Sons

Published: 2011-09-20

Total Pages: 750

ISBN-13: 111821109X

DOWNLOAD EBOOK

Praise for the First Edition "Now a new laboratory bible for optics researchers has joined the list: it is Phil Hobbs's Building Electro-Optical Systems: Making It All Work." —Tony Siegman, Optics & Photonics News Building a modern electro-optical instrument may be the most interdisciplinary job in all of engineering. Be it a DVD player or a laboratory one-off, it involves physics, electrical engineering, optical engineering, and computer science interacting in complex ways. This book will help all kinds of technical people sort through the complexity and build electro-optical systems that just work, with maximum insight and minimum trial and error. Written in an engaging and conversational style, this Second Edition has been updated and expanded over the previous edition to reflect technical advances and a great many conversations with working designers. Key features of this new edition include: Expanded coverage of detectors, lasers, photon budgets, signal processing scheme planning, and front ends Coverage of everything from basic theory and measurement principles to design debugging and integration of optical and electronic systems Supplementary material is available on an ftp site, including an additional chapter on thermal Control and Chapter problems highly relevant to real-world design Extensive coverage of high performance optical detection and laser noise cancellation Each chapter is full of useful lore from the author's years of experience building advanced instruments. For more background, an appendix lists 100 good books in all relevant areas, introductory as well as advanced. Building Electro-Optical Systems: Making It All Work, Second Edition is essential reading for researchers, students, and professionals who have systems to build.


Integrated Optomechanical Analysis

Integrated Optomechanical Analysis

Author: Keith B. Doyle

Publisher: SPIE Press

Published: 2002

Total Pages: 252

ISBN-13: 9780819446091

DOWNLOAD EBOOK

This tutorial presents optomechanical modeling techniques to effectively design and analyze high-performance optical systems. It discusses thermal and structural modeling methods that use finite-element analysis to predict the integrity and performance of optical elements and optical support structures. Includes accompanying CD-ROM with examples.


Handbook of Optical Design

Handbook of Optical Design

Author: Daniel Malacara-Hernández

Publisher: CRC Press

Published: 2003-09-21

Total Pages: 551

ISBN-13: 0203912942

DOWNLOAD EBOOK

Infused with more than 500 tables and figures, this reference clearly illustrates the intricacies of optical system design and evaluation and considers key aspects of component selection, optimization, and integration for the development of effective optical apparatus. The book provides a much-needed update on the vanguard in the field with vivid e


Optical Engineering Fundamentals

Optical Engineering Fundamentals

Author: Bruce H. Walker

Publisher: SPIE Press

Published: 1998

Total Pages: 366

ISBN-13: 9780819427649

DOWNLOAD EBOOK

This text aims to expose students to the science of optics and optical engineering without the complications of advanced physics and mathematical theory.


Introduction to Infrared and Electro-Optical Systems, Third Edition

Introduction to Infrared and Electro-Optical Systems, Third Edition

Author: Ronald G. Driggers

Publisher: Artech House

Published: 2022-08-31

Total Pages: 739

ISBN-13: 163081833X

DOWNLOAD EBOOK

This newly revised and updated edition offers a current and complete introduction to the analysis and design of Electro-Optical (EO) imaging systems. The Third Edition provides numerous updates and several new chapters including those covering Pilotage, Infrared Search and Track, and Simplified Target Acquisition Model. The principles and components of the Linear Shift-Invariant (LSI) infrared and electro-optical systems are detailed in full and help you to combine this approach with calculus and domain transformations to achieve a successful imaging system analysis. Ultimately, the steps described in this book lead to results in quantitative characterizations of performance metrics such as modulation transfer functions, minimum resolvable temperature difference, minimum resolvable contrast, and probability of object discrimination. The book includes an introduction to two-dimensional functions and mathematics which can be used to describe image transfer characteristics and imaging system components. You also learn diffraction concepts of coherent and incoherent imaging systems which show you the fundamental limits of their performance. By using the evaluation procedures contained in this desktop reference, you become capable of predicting both sensor test and field performance and quantifying the effects of component variations. The book contains over 800 time-saving equations and includes numerous analyses and designs throughout. It also includes a reference link to special website prepared by the authors that augments the book in the classroom and serves as an additional resource for practicing engineers. With its comprehensive coverage and practical approach, this is a strong resource for engineers needing a bench reference for sensor and basic scenario performance calculations. Numerous analyses and designs are given throughout the text. It is also an excellent text for upper-level students with an interest in electronic imaging systems.