Quantum Network with Multiple Cold Atomic Ensembles

Quantum Network with Multiple Cold Atomic Ensembles

Author: Bo Jing

Publisher: Springer Nature

Published: 2022-03-16

Total Pages: 197

ISBN-13: 981190328X

DOWNLOAD EBOOK

This book highlights the novel research in quantum memory networking, especially quantum memories based on cold atomic ensembles. After discussing the frontiers of quantum networking research and building a DLCZ-type quantum memory with cold atomic ensemble, the author develops the ring cavity enhanced quantum memory and demonstrates a filter-free quantum memory, which significantly improves the photon-atom entanglement. The author then realizes for the first time the GHZ-type entanglement of three separate quantum memories, a building block of 2D quantum repeaters and quantum networks. The author also combines quantum memories and time-resolved measurements, and reports the first multiple interference of three single photons with different colors. The book is of good reference value for graduate students, researchers, and technical personnel in quantum information sciences.


Quantum Information with Continuous Variables of Atoms and Light

Quantum Information with Continuous Variables of Atoms and Light

Author: N. J. Cerf

Publisher: World Scientific

Published: 2007

Total Pages: 629

ISBN-13: 1860948162

DOWNLOAD EBOOK

Quantum information describes the new field which bridges quantum physics and information science. The quantum world allows for completely new architectures and protocols. While originally formulated in continuous quantum variables, the field worked almost exclusively with discrete variables, such as single photons and photon pairs. The renaissance of continuous variables came with European research consortia such as ACQUIRE (Advanced Coherent Quantum Information Research) in the late 1990s, and QUICOV (Quantum Information with Continuous Variables) from 2000OCo2003. The encouraging research results of QUICOV and the new conference series CVQIP (Continuous Variable Quantum Information Processing) triggered the idea for this book. This book presents the state of the art of quantum information with continuous quantum variables. The individual chapters discuss results achieved in QUICOV and presented at the first five CVQIP conferences from 2002OCo2006. Many world-leading scientists working on continuous variables outside Europe also contribute to the book.


Quantum Nonlinear Optics

Quantum Nonlinear Optics

Author: Eiichi Hanamura

Publisher: Springer Science & Business Media

Published: 2007-07-04

Total Pages: 241

ISBN-13: 3540684840

DOWNLOAD EBOOK

This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, and mutual manipulation of light and matter. It also covers laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. In addition, latest results of the frontier of this science are presented. Problems and solutions help the reader to master and review the material.


Quantum Interferometry in Phase Space

Quantum Interferometry in Phase Space

Author: Martin Suda

Publisher: Springer Science & Business Media

Published: 2006

Total Pages: 204

ISBN-13: 9783540260707

DOWNLOAD EBOOK

"Quantum Interferometry in Phase Space" is primarily concerned with quantum-mechanical distribution functions and their applications in quantum optics and neutron interferometry. In the first part of the book, the author describes the phase-space representation of quantum optical phenomena such as coherent and squeezed states. Applications to interferometry, e.g. in beam splitters and fiber networks, are also presented. In the second part of the book, the theoretical formalism is applied to neutron interferometry, including the dynamical theory of diffraction, coherence properties of superposed beams, and dephasing effects.


Alice in Quantumland

Alice in Quantumland

Author: Robert Gilmore

Publisher: Springer Science & Business Media

Published: 1995-07-21

Total Pages: 202

ISBN-13: 9780387914954

DOWNLOAD EBOOK

In this cleverly conceived book, physicist Robert Gilmore makes accessible some complex concepts in quantum mechanics by sending Alice to Quantumland-a whole new Wonderland, smaller than an atom, where each attraction demonstrates a different aspect of quantum theory. Alice unusual encounters, enhanced by illustrations by Gilmore himself, make the Uncertainty Principle, wave functions, the Pauli Principle, and other elusive concepts easier to grasp.


Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles

Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles

Author: Dong-Sheng Ding

Publisher: Springer

Published: 2017-12-26

Total Pages: 136

ISBN-13: 9811074763

DOWNLOAD EBOOK

This thesis presents an experimental study of quantum memory based on cold atomic ensembles and discusses photonic entanglement. It mainly focuses on experimental research on storing orbital angular momentum, and introduces readers to methods for storing a single photon carried by an image or an entanglement of spatial modes. The thesis also discusses the storage of photonic entanglement using the Raman scheme as a step toward implementing high-bandwidth quantum memory. The storage of photonic entanglement is central to achieving long-distance quantum communication based on quantum repeaters and scalable linear optical quantum computation. Addressing this key issue, the findings presented in the thesis are very promising with regard to future high-speed and high-capacity quantum communications.


The Quantum World of Ultra-Cold Atoms and Light Book II: The Physics of Quantum-Optical Devices

The Quantum World of Ultra-Cold Atoms and Light Book II: The Physics of Quantum-Optical Devices

Author: Crispin Gardiner

Publisher: World Scientific Publishing Company

Published: 2015-04-24

Total Pages: 524

ISBN-13: 1783266155

DOWNLOAD EBOOK

This century has seen the development of technologies for manipulating and controlling matter and light at the level of individual photons and atoms, a realm in which physics is fully quantum-mechanical. The dominant experimental technology is the laser, and the theoretical paradigm is quantum optics. The Quantum World of Ultra-Cold Atoms and Light is a trilogy, which presents the quantum optics way of thinking and its applications to quantum devices. This book — The Physics of Quantum-Optical Devices — provides a comprehensive treatment of theoretical quantum optics. It covers applications to the optical manipulation of the quantum states of atoms, laser cooling, continuous measurement, quantum computers and quantum processors, superconducting systems and quantum networks. The subject is consistently formulated in terms of quantum stochastic techniques, and a systematic and thorough development of these techniques is a central part of the book. There is also a compact overview of the ideas of quantum information theory. The main aim of the book is to present the theoretical techniques necessary for the understanding of quantum optical devices, with special attention to those devices used in quantum information processing and quantum simulation. Although these techniques were developed originally for the optical regime, they are also applicable to electromagnetic radiation from the microwave realm to the ultra-violet, and for atomic systems, Josephson junction systems, quantum dots and nano-mechanical systems. For more information, please visit: http://europe.worldscientific.com/quantum-world-of-ultra-cold-atoms-and-light.html


Pushing the Frontiers of Atomic Physics

Pushing the Frontiers of Atomic Physics

Author: Robin C“t‚

Publisher: World Scientific

Published: 2009

Total Pages: 372

ISBN-13: 9814271993

DOWNLOAD EBOOK

This unique book highlights the state of the art of the booming field of atomic physics in the early 21st century. It contains the majority of the invited papers from an ongoing series of conferences, held every two years, devoted to forefront research and fundamental studies in basic atomic physics, broadly defined. This conference, held at the University of Connecticut in July 2008, is part of a series of conferences, which began in 1968 and had its historical origins in the molecular beam conferences of the I. I. Rabi group. It provides an archival and up-to-date summary of current research on atoms and simple molecules as well as their interactions with each other and with external fields, including degenerate Bose and Fermi quantum gases and interactions involving ultrafast lasers, strong field control of X-ray processes, and nanoscale and mesoscopic quantum systems. The work of three recent Nobel Laureates in atomic physics is included, beginning with a lecture by Eric Cornell on ?When Is a Quantum Gas a Quantum Liquid??. There are also papers by Laureates Steven Chu and Roy Glauber. The volume also contains the IUPAP Young Scientist Prize lecture by Cheng Chin on ?Exploring Universality of Few-Body Physics Based on Ultracold Atoms Near Feshbach Resonances?.


Advances in Atomic, Molecular, and Optical Physics

Advances in Atomic, Molecular, and Optical Physics

Author:

Publisher: Academic Press

Published: 2018-06-09

Total Pages: 480

ISBN-13: 0128142162

DOWNLOAD EBOOK

Advances in Atomic, Molecular, and Optical Physics, Volume 67, provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by distinguished experts that contain relevant review materials and detailed descriptions of important developments in the field. - Presents the work of international experts in the field - Contains comprehensive articles that compile recent developments in a field that is experiencing rapid growth, with new experimental and theoretical techniques emerging - Ideal for users interested in optics, excitons, plasmas and thermodynamics - Topics covered include atmospheric science, astrophysics, and surface and laser physics, amongst others


Semiconductor Nanophotonics

Semiconductor Nanophotonics

Author: Michael Kneissl

Publisher: Springer Nature

Published: 2020-03-10

Total Pages: 572

ISBN-13: 3030356566

DOWNLOAD EBOOK

This book provides a comprehensive overview of the state-of-the-art in the development of semiconductor nanostructures and nanophotonic devices. It covers epitaxial growth processes for GaAs- and GaN-based quantum dots and quantum wells, describes the fundamental optical, electronic, and vibronic properties of nanomaterials, and addresses the design and realization of various nanophotonic devices. These include energy-efficient and high-speed vertical cavity surface emitting lasers (VCSELs) and ultra-small metal-cavity nano-lasers for applications in multi-terabus systems; silicon photonic I/O engines based on the hybrid integration of VCSELs for highly efficient chip-to-chip communication; electrically driven quantum key systems based on q-bit and entangled photon emitters and their implementation in real information networks; and AlGaN-based deep UV laser diodes for applications in medical diagnostics, gas sensing, spectroscopy, and 3D printing. The experimental results are accompanied by reviews of theoretical models that describe nanophotonic devices and their base materials. The book details how optical transitions in the active materials, such as semiconductor quantum dots and quantum wells, can be described using a quantum approach to the dynamics of solid-state electrons under quantum confinement and their interaction with phonons, as well as their external pumping by electrical currents. With its broad and detailed scope, this book is indeed a cutting-edge resource for researchers, engineers and graduate-level students in the area of semiconductor materials, optoelectronic devices and photonic systems.