The contributors to the book are world best experts in the optics of random media; they provide a state-of-the-art review of recent developments in the field including nonlinear optical and magneto-optical properties, Raman and hyper-Raman scattering, laser action, plasmon excitation and localized giant fields, imaging and spectroscopy of random media
Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 1960s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.
This book presents state-of-the-art contributions from a number of leading experts that actively work worldwide in the rapidly growing, highly interdisciplinary, and fascinating fields of aperiodic optics and complex photonics. Edited by Luca Dal Negro, a prominent researcher in these areas of optical science, the book covers the fundamental, compu
Nonlinear Optics of Random Media reviews recent advances in in one of the most prominent fields of physics. It provides an outline of the basic models of irregular structures of random inhomogeneous media and the approaches used to describe their linear electromagnetic properties. Nonlinearities in random media are also discussed. The chapters can be read independently, so scientists and students interested in a specific problem can go directly to the relevant text.
The book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures. The second edition has been updated and extended with respect to probing matter in different spectral regions, homogenous and inhomogeneous line broadening mechanisms and the Fresnel formula for the effect of planar interfaces.
Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This book summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.
This book contains 17 papers from the Controlled Processing of Nanoparticle-based Materials and Nanostructured Films; Nanotechnology for Energy, Healthcare, and Industry; and Nanolaminated Ternary Carbides and Nitrides (MAX Phases) symposia held during the 2010 Materials Science and Technology (MS&T'10) meeting, October 17-21, 2010, Houston, Texas. Topics include: Direct Manufacturing; Low Dimension Nanomaterials; Processing and Sintering; Thin Films; Nanolaminated Ternary Carbides and Nitrides (MAX Phases); and Novel Nanomaterial Approaches.
While the chemistry, physics, and optical properties of simple atoms and molecules are quite well understood, this book demonstrates that there is much to be learned about the optics of nanomaterials. Through comparative analysis of the size-dependent optical response from nanomaterials, it is shown that although strides have been made in computational chemistry and physics, bridging length scales from nano to macro remains a major challenge. Organic, molecular, polymer, and biological systems are shown to be potentially useful models for assembly. Our progress in understanding the optical properties of biological nanomaterials is important driving force for a variety of applications.
Glasses containing metallic nanoparticles exhibit very promising linear and nonlinear optical properties, mainly due to the surface plasmon resonances (SPRs) of the nanoparticles. The spectral position in the visible and near-infrared range and polarization dependence of the SPR are characteristically determined by the nanoparticles’ shapes. The focus of Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites is the interaction of intense ultra-short laser pulses with glass containing silver nanoparticles embedded in soda-lime glass, and nanostructural modifications in metal-glass nanocomposites induced by such laser pulses. In order to provide a comprehensive physical picture of the processes leading to laser-induced persistent shape transformation of the nanoparticles, series of experimental results investigating the dependences of laser assisted shape modifications of nanoparticles with laser pulse intensity, excitation wavelength, temperature are considered. In addition, the resulting local optical dichroism allows producing very flexibly polarizing optical (sub-) microstructures with well-specified optical properties. The achieved considerable progress towards technological application of this technique, in particular also for long-term optical data storage, is also discussed.
This proceedings volume presents invited reviews and original short notes of recent results obtained in studies concerning the fabrication and application of nanostructures, which hold great promise for the new generation of electronic and optoelectronic devices. Governing exciting and relatively new topics such as fast-progressing nanoelectronics and optoelectronics, molecular electronics and spintronics, as well as nanotechnology and quantum processing of information, this books gives readers a more complete understanding of the practical uses of nanotechnology and nanostructures.