Optical Properties of Advanced Materials

Optical Properties of Advanced Materials

Author: Yoshinobu Aoyagi

Publisher: Springer Science & Business Media

Published: 2013-05-14

Total Pages: 219

ISBN-13: 3642335276

DOWNLOAD EBOOK

In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include: quantum structures of semiconductors, spintronics, photonic crystals, surface plasmons in metallic nanostructures, photonic metamaterials, liquid crystal materials, organic LED materials and magnet-optics.


Optical Properties of Materials and Their Applications

Optical Properties of Materials and Their Applications

Author: Jai Singh

Publisher: John Wiley & Sons

Published: 2020-01-07

Total Pages: 667

ISBN-13: 111950631X

DOWNLOAD EBOOK

Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories Optical Properties of Materials and Their Applications, 2nd Edition is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.


Physical Properties of Materials, Third Edition

Physical Properties of Materials, Third Edition

Author: Mary Anne White

Publisher: CRC Press

Published: 2018-10-12

Total Pages: 496

ISBN-13: 0429887116

DOWNLOAD EBOOK

Designed for advanced undergraduate students and as a useful reference book for materials researchers, Physical Properties of Materials, Third Edition establishes the principles that control the optical, thermal, electronic, magnetic, and mechanical properties of materials. Using an atomic and molecular approach, this introduction to materials science offers readers a wide-ranging survey of the field and a basis to understand future materials. The author incorporates comments on applications of materials science, extensive references to the contemporary and classic literature, and 350 end-of-chapter problems. In addition, unique tutorials allow students to apply the principles to understand applications, such as photocopying, magnetic devices, fiber optics, and more. This fully revised and updated Third Edition includes new materials and processes, such as topological insulators, 3-D printing, and more information on nanomaterials. The new edition also now adds Learning Goals at the end of each chapter and a Glossary with more than 500 entries for quick reference.


Optical Materials

Optical Materials

Author: Joseph H. Simmons

Publisher: Academic Press

Published: 2000

Total Pages: 416

ISBN-13: 9780126441406

DOWNLOAD EBOOK

Optical Materials presents, in a unified form, the underlying physical and structural processes that determine the optical behavior of materials. It does this by combining elements from physics, optics, and materials science in a seamless manner, and introducing quantum mechanics when needed. The book groups the characteristics of optical materials into classes with similar behavior. In treating each type of material, the text pays particular attention to atomic composition and chemical makeup, electronic states and band structure, and physical microstructure so that the reader will gain insight into the kinds of materials engineering and processing conditions that are required to produce a material exhibiting a desired optical property. The physical principles are presented on many levels, including a physical explanation, followed by formal mathematical support and examples and methods of measurement. The reader may overlook the equations with no loss of comprehension, or may use the text to find appropriate equations for calculations of optical properties. Presents the optical properties of metals, insulators, semiconductors, laser materials, and non-linear materials Physical processes are discussed and quantified using precise mathematical treatment, followed by examples and a discussion of measurement methods Authors combine many years of expertise in condensed matter physics, classical and quantum optics, and materials science The text is written on many levels and will benefit the novice as well as the expert Explains the concept of color in materials Explains the non-linear optical behavior of materials in a unified form Appendices present rigorous derivations


Nanocomposites as Next-Generation Optical Materials

Nanocomposites as Next-Generation Optical Materials

Author: Daniel Werdehausen

Publisher: Springer Nature

Published: 2021-06-11

Total Pages: 168

ISBN-13: 303075684X

DOWNLOAD EBOOK

This book looks at advanced nanocomposites, introducing long-awaited concepts towards bridging the gap between nanostructured optical materials and next-generation imaging systems. It investigates nanocomposites as bulk optical materials and highlights the immense potential they hold for real-world optical elements and systems, such as smartphone cameras. It covers the full spectrum of nanocomposite optical materials from their fundamental properties to analytical modeling and detailed application examples. This book also provides an in-depth discussion of the role these new materials play in the development of broadband flat optics – diffractive optical elements used for enhancing high-end broadband imaging systems. Written by an industry expert, this book seamlessly connects fundamental research and real-world applications. It is the ideal guide both for optical engineers working towards integrating new technologies, and researchers involved with fundamental research on optical materials.


Spectroscopic Properties of Rare Earths in Optical Materials

Spectroscopic Properties of Rare Earths in Optical Materials

Author: Guokui Liu

Publisher: Springer Science & Business Media

Published: 2006-01-29

Total Pages: 567

ISBN-13: 3540282092

DOWNLOAD EBOOK

Aimed at researchers and graduate students, this book provides up-to-date information about the electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties covers electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions of materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.


Springer Handbook of Lasers and Optics

Springer Handbook of Lasers and Optics

Author: Frank Träger

Publisher: Springer Science & Business Media

Published: 2012-05-05

Total Pages: 1704

ISBN-13: 3642194095

DOWNLOAD EBOOK

This new edition features numerous updates and additions. Especially 4 new chapters on Fiber Optics, Integrated Optics, Frequency Combs and Interferometry reflect the changes since the first edition. In addition, major complete updates for the chapters: Optical Materials and Their Properties, Optical Detectors, Nanooptics, and Optics far Beyond the Diffraction Limit. Features Contains over 1000 two-color illustrations. Includes over 120 comprehensive tables with properties of optical materials and light sources. Emphasizes physical concepts over extensive mathematical derivations. Chapters with summaries, detailed index Delivers a wealth of up-to-date references.


Colour and the Optical Properties of Materials

Colour and the Optical Properties of Materials

Author: Richard J. D. Tilley

Publisher: John Wiley & Sons

Published: 2010-12-20

Total Pages: 528

ISBN-13: 9780470974766

DOWNLOAD EBOOK

Colour and the Optical Properties of Materials carefully introduces the science behind the subject, along with many modern and cutting-edge applications, chosen to appeal to today's students. For science students, it provides a broad introduction to the subject and the many applications of colour. To more applied students, such as engineering and arts students, it provides the essential scientific background to colour and the many applications. New to this Edition: The chapter framework of the first edition will be retained, with each chapter being substantially rewritten and some material would be relocated. Some chapters will be rewritten in a clearer fashion, e.g. There have been no significant advances in the understanding of rainbows recently, but the text could be clarified and improved. Colour has been an important attribute of many nano-particle containing systems, such as quantum dots. This aspect will be included, e.g. the colour of gold ruby glass, described in Chapter 5 as part of scattering phenomena now is better treated in terms of gold nanoparticles and surface plasmons. This would probably be transferred to Chapter 10 and considered in tandem with the colour of metals such as copper, silver and gold. A similar state of affairs applies to silver nanoparticles and polychromic glass. Some chapters will include extensive new material, e.g. Chapter 8, colours due to molecular processes [organic LEDs etc], and Chapter 12, Displays, [touch screen technologies]. For all chapters it would be intended to take into account the current scientific literature up to the time of submission – say up to the end of 2009. The end of chapter Further Reading sections would reflect this up-to-date overview. The end of chapter problems will be strengthened and expanded.


Optical Properties of Condensed Matter and Applications

Optical Properties of Condensed Matter and Applications

Author: Jai Singh

Publisher: John Wiley & Sons

Published: 2006-10-02

Total Pages: 451

ISBN-13: 9780470021934

DOWNLOAD EBOOK

Following a semi-quantitative approach, this book presents asummary of the basic concepts, with examples and applications, andreviews recent developments in the study of optical properties ofcondensed matter systems. Key Features: Covers basic knowledge as well as application topics Includes theory, experimental techniques and current anddeveloping applications Timely and useful contribution to the literature Written by internationally respected contributors working inphysics and electrical engineering departments and governmentlaboratories


Optical Materials and Applications

Optical Materials and Applications

Author: Moriaki Wakaki

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 317

ISBN-13: 1420015486

DOWNLOAD EBOOK

The definition of optical material has expanded in recent years, largely because of IT advances that have led to rapid growth in optoelectronics applications. Helping to explain this evolution, Optical Materials and Applications presents contributions from leading experts who explore the basic concepts of optical materials and the many typical applications in which they are used. An invaluable reference for readers ranging from professionals to technical managers to graduate engineering students, this book covers everything from traditional principles to more cutting-edge topics. It also details recent developmental trends, with a focus on basic optical properties of material. Key topics include: Fundamental optical properties of solids Fundamental optical materials (including thin films) from both linear and nonlinear perspectives Use of bulk materials in the design of various modifications Application of optical thin films in artificial components Formation of artificial structures with sub-wavelength dimensions Use of physical or chemical techniques to control lightwave phase One-, two-, and three-dimensional structures used to control dispersion of materials for nanophotonics Progress of the optical waveguide, which makes optical systems more compact and highly efficient This book carefully balances coverage of theory and application of typical optical materials for ultraviolet, visible and infrared, non-linear optics, solid state lasers, optical waveguides, optical thin films and nanophotonics. It addresses both basic ideas and more advanced topics, making it an equally invaluable resource for beginners and active researchers in this growing field.