Optical Measurement Methods in Biomechanics

Optical Measurement Methods in Biomechanics

Author: J.C. Shelton

Publisher: Springer Science & Business Media

Published: 2007-08-19

Total Pages: 208

ISBN-13: 0585352283

DOWNLOAD EBOOK

This book has been written to provide research workers with an introd- tion to several optical techniques for new applications. It is intended to be comprehensible to people from a wide range of backgrounds - no prior optical or physics knowledge has been assumed. However, sufficient technical details have been included to enable the reader to understand the basics of the techniques and to be able to read further from the ref- ences if necessary. The book should be as useful to postgraduate students and experienced researchers as those entering the bioengineering field, irrespective of whether they have a technical or clinical background. It has been prepared with an awareness of the inherent difficulties in und- standing aspects of optics which, in the past, have precluded practical application. The contents address a broad range of optical measurement techniques which have been used in biomechanics, techniques characterized as n- contacting and non-destructive. Theoretical outlines and practical advice on gaining entry to the fields of expertise are complemented by biomec- nical case studies and key literature references. The aim is to present each technique, to appraise its advantages and capabilities and thereby to allow informed selection of an appropriate method for a particular app- cation. It is anticipated that research workers will be assisted in est- lishing new methodologies and gain first-hand experience of the techniques.


Optical Measurement Methods in Biomechanics

Optical Measurement Methods in Biomechanics

Author: J.C. Shelton

Publisher: Springer

Published: 2013-04-26

Total Pages: 196

ISBN-13: 9781475770797

DOWNLOAD EBOOK

This book has been written to provide research workers with an introd- tion to several optical techniques for new applications. It is intended to be comprehensible to people from a wide range of backgrounds - no prior optical or physics knowledge has been assumed. However, sufficient technical details have been included to enable the reader to understand the basics of the techniques and to be able to read further from the ref- ences if necessary. The book should be as useful to postgraduate students and experienced researchers as those entering the bioengineering field, irrespective of whether they have a technical or clinical background. It has been prepared with an awareness of the inherent difficulties in und- standing aspects of optics which, in the past, have precluded practical application. The contents address a broad range of optical measurement techniques which have been used in biomechanics, techniques characterized as n- contacting and non-destructive. Theoretical outlines and practical advice on gaining entry to the fields of expertise are complemented by biomec- nical case studies and key literature references. The aim is to present each technique, to appraise its advantages and capabilities and thereby to allow informed selection of an appropriate method for a particular app- cation. It is anticipated that research workers will be assisted in est- lishing new methodologies and gain first-hand experience of the techniques.


New Topics in Lasers and Electro-optics

New Topics in Lasers and Electro-optics

Author: William T. Arkin

Publisher: Nova Publishers

Published: 2006

Total Pages: 246

ISBN-13: 9781594548598

DOWNLOAD EBOOK

It is expected that ongoing advances in optics will revolutionise the 21st century as they began doing in the last quarter of the 20th. Such fields as communications, materials science, computing and medicine are leaping forward based on developments in optics.


Experimental Mechanics

Experimental Mechanics

Author: Emmanuel E. Gdoutos

Publisher: Springer Nature

Published: 2021-11-15

Total Pages: 318

ISBN-13: 3030894665

DOWNLOAD EBOOK

The book presents in a clear, simple, straightforward, novel and unified manner the most used methods of experimental mechanics of solids for the determination of displacements, strains and stresses. Emphasis is given on the principles of operation of the various methods, not in their applications to engineering problems. The book is divided into sixteen chapters which include strain gages, basic optics, geometric and interferometric moiré, optical methods (photoelasticity, interferometry, holography, caustics, speckle methods, digital image correlation), thermoelastic stress analysis, indentation, optical fibers, nondestructive testing, and residual stresses. The book will be used not only as a learning tool, but as a basis on which the researcher, the engineer, the experimentalist, the student can develop their new own ideas to promote research in experimental mechanics of solids.


Tissue Elasticity Imaging

Tissue Elasticity Imaging

Author: S. Kaisar Alam

Publisher: Elsevier

Published: 2019-06-15

Total Pages: 258

ISBN-13: 0128096616

DOWNLOAD EBOOK

Tissue Elasticity Imaging: Volume One, Theory and Methods offers an extensive treatment of the fundamentals and applications of this groundbreaking diagnostic modality. The book introduces elasticity imaging, its history, the fundamental physics, and the different elasticity imaging methods, along with their implementation details, problems and artefacts. It is an essential resource for all researchers and practitioners interested in any elasticity imaging modality. As many diseases, including cancers, alter tissue mechanical properties, it is not always possible for conventional methods to detect changes, but with elasticity images that are produced by slow tissue deformation or low-frequency vibration, these changes can be displayed. Offers the first comprehensive reference on elasticity imaging Discusses the fundamentals of technology and their limitations and solutions, along with advanced methods and future directions Addresses the technologies and applications useful to both researchers and clinical practitioners Includes an online reference section regularly updated with advances in technology and applications


Recent Advances in Scoliosis

Recent Advances in Scoliosis

Author: Theodoros Grivas

Publisher: BoD – Books on Demand

Published: 2012-05-09

Total Pages: 360

ISBN-13: 9535105957

DOWNLOAD EBOOK

This book contains information on recent advances in aetiology and pathogenesis of idiopathic scoliosis, for the assessment of this condition before treatment and during the follow-up, making a note of emerging technology and analytical techniques like virtual anatomy by 3-D MRI/CT, quantitative MRI and Moire Topography. Some new trends in conservative treatment and the long term outcome and complications of surgical treatment are described. Issues like health related quality of life, psychological aspects of scoliosis treatment and the very important "patient's perspective" are also discussed. Finally two chapters tapping the untreated early onset scoliosis and the congenital kyphoscoliosis due to hemivertebra are included. It must be emphasized that knowledgeable authors with their contributions share their experience and enthusiasm with peers interested in scoliosis.


Characterization of Biomaterials

Characterization of Biomaterials

Author: Ryan K. Roeder

Publisher: Elsevier Inc. Chapters

Published: 2013-03-12

Total Pages: 71

ISBN-13: 0128070978

DOWNLOAD EBOOK

The design of biomedical devices almost always involves some form of mechanical characterization of biomaterials. This chapter provides a broad overview of experimental methods and important considerations for mechanical characterization of biomaterials, with special attention to the practical needs of engineers and scientists who encounter a need to characterize the mechanical properties of a biomaterial but may not know where to begin or what the key considerations should be. Many details are necessarily omitted from this broad overview, but numerous references are provided for greater technical depth on a particular topic, standardized methodologies, and exemplary studies. Fundamental concepts are introduced, beginning with stress and strain versus force and displacement. The mechanical properties measured from a stress–strain curve, different types of stress–strain curves, and corresponding constitutive models are reviewed, including differences in material classes and anisotropy. Three primary methods of analysis for fracture mechanics are introduced, including stress concentrations, energy criteria for crack initiation and propagation (fracture toughness), and statistical methods for the probability of fracture. The mechanical characterization of biomaterials begins with selection and preparation of standardized test specimens, which are critical to obtaining accurate and reproducible measurements of material properties. Practical considerations are outlined for selection and preparation of the specimen size, geometry, surface finish, and precracking. The mechanical characterization of biomaterial test specimens always involves the application and measurement of load and deformation. Practical considerations are outlined for the selection and use of load frames, load cells, load fixtures, extensometers, and strain gauges. A number of common loading modes are introduced and compared: uniaxial tension, uniaxial compression, biaxial tension, torsion, diametral compression, three-point bending, four-point bending, and in-plane shear (including biomaterial-tissue interfacial shear strength). Strain-rate sensitivity or time-dependent behavior can profoundly influence stress–strain behavior and thus measured mechanical properties. The effects of high strain rates may be characterized by impact testing using a pendulum, drop tower, or split Hopkinson pressure bar. The effects of low strain rates may be characterized by creep deformation or creep rupture tests. The time-dependent behavior of viscoelastic materials is introduced, including creep, stress relaxation, common constitutive models, and practical considerations for testing. The frequency of loading, or cyclic loading, is another aspect of time-dependent behavior, which is critical for mechanical characterization of biomaterials, leading to fatigue deformation and failure or viscoelastic creep and stress relaxation. Practical considerations are described for selecting the waveform, frequency, cyclic stress/strain levels, loading mode, and test duration. Common methods are introduced for fatigue lifetime testing (including S-N curves, notch factors, and fatigue damage), fatigue crack propagation, and dynamic mechanical analysis (DMA). Nondestructive tests are particularly useful for sampling small volumes of a biomaterial (e.g., implant retrieval or biopsy) or characterizing spatial heterogeneity in mechanical properties. Various indentation tests and indenter geometries are introduced and compared, including classic hardness (Brinell and Rockwell), microhardness (Knoop and Vickers), and instrumented nanoindentation (Berkovich, cube corner, etc.). Methods and limitations are described for characterizing the reduced modulus, viscoelasticity, and fracture toughness using indentation. Ultrasonic wave-propagation methods are also introduced with an emphasis on methods for characterizing anisotropic elastic constants. Biomaterials are typically subjected to various sterilization methods prior to service and an aqueous physiological environment in service. Therefore, the effects of temperature, pressure, various aqueous media (water, phosphate buffered saline (PBS), media, foetal bovine serum (FBS), lipids, etc.), and irradiation on mechanical characterization of biomaterials are considered, including the degradation of mechanical properties by various mechanisms involving water uptake, hydrolysis, and oxidation. Finally, methods and guidelines are provided for data acquisition from transducers and data analysis, including an introduction to some basic statistical methods.


Optical Measurement Techniques

Optical Measurement Techniques

Author: Kai-Erik Peiponen

Publisher: Springer Science & Business Media

Published: 2009-02-12

Total Pages: 162

ISBN-13: 3540719261

DOWNLOAD EBOOK

Devoted to new optical measurement techniques in industry as well as the life sciences, this book has a fresh perspective on the development of modern optical sensors, which are essential for the control of parameters in industrial and biomedical applications.


Characterization of Biomaterials

Characterization of Biomaterials

Author: Amit Bandyopadhyay

Publisher: Newnes

Published: 2013-03-12

Total Pages: 451

ISBN-13: 0124158633

DOWNLOAD EBOOK

One of the key challenges current biomaterials researchers face is identifying which of the dizzying number of highly specialized characterization tools can be gainfully applied to different materials and biomedical devices. Since this diverse marketplace of tools and techniques can be used for numerous applications, choosing the proper characterization tool is highly important, saving both time and resources.Characterization of Biomaterials is a detailed and multidisciplinary discussion of the physical, chemical, mechanical, surface, in vitro and in vivo characterization tools and techniques of increasing importance to fundamental biomaterials research.Characterization of Biomaterials will serve as a comprehensive resource for biomaterials researchers requiring detailed information on physical, chemical, mechanical, surface, and in vitro or in vivo characterization. The book is designed for materials scientists, bioengineers, biologists, clinicians and biomedical device researchers seeking input on planning on how to test their novel materials, structures or biomedical devices to a specific application. Chapters are developed considering the need for industrial researchers as well as academics. - Biomaterials researchers come from a wide variety of disciplines: this book will help them to analyze their materials and devices taking advantage of the multiple experiences on offer - Coverage encompasses a cross-section of the physical sciences, biological sciences, engineering and applied sciences characterization community, providing gainful and cross-cutting insight into this highly multi-disciplinary field - Detailed coverage of important test protocols presents specific examples and standards for applied characterization


Experimental Methods in Orthopaedic Biomechanics

Experimental Methods in Orthopaedic Biomechanics

Author: Radovan Zdero

Publisher: Academic Press

Published: 2016-10-14

Total Pages: 430

ISBN-13: 0128038551

DOWNLOAD EBOOK

Experimental Methods in Orthopaedic Biomechanics is the first book in the field that focuses on the practicalities of performing a large variety of in-vitro laboratory experiments. Explanations are thorough, informative, and feature standard lab equipment to enable biomedical engineers to advance from a 'trial and error' approach to an efficient system recommended by experienced leaders. This is an ideal tool for biomedical engineers or biomechanics professors in their teaching, as well as for those studying and carrying out lab assignments and projects in the field. The experienced authors have established a standard that researchers can test against in order to explain the strengths and weaknesses of testing approaches. - Provides step-by-step guidance to help with in-vitro experiments in orthopaedic biomechanics - Presents a DIY manual that is fully equipped with illustrations, practical tips, quiz questions, and much more - Includes input from field experts who combine their real-world experience to provide invaluable insights for all those in the field