Single Semiconductor Quantum Dots

Single Semiconductor Quantum Dots

Author: Peter Michler

Publisher: Springer Science & Business Media

Published: 2009-06-13

Total Pages: 390

ISBN-13: 3540874461

DOWNLOAD EBOOK

This book reviews recent advances in the field of semiconductor quantum dots via contributions from prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots.


Quantum Dots

Quantum Dots

Author: Alexander Tartakovskii

Publisher: Cambridge University Press

Published: 2012-07-19

Total Pages: 377

ISBN-13: 1107012589

DOWNLOAD EBOOK

A comprehensive review of cutting-edge solid state research, focusing on quantum dot nanostructures, for graduate students and researchers.


Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures

Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures

Author: Gabriela Slavcheva

Publisher: Springer Science & Business Media

Published: 2010-06-01

Total Pages: 338

ISBN-13: 3642124917

DOWNLOAD EBOOK

The fundamental concept of quantum coherence plays a central role in quantum physics, cutting across disciplines of quantum optics, atomic and condensed matter physics. Quantum coherence represents a universal property of the quantum s- tems that applies both to light and matter thereby tying together materials and p- nomena. Moreover, the optical coherence can be transferred to the medium through the light-matter interactions. Since the early days of quantum mechanics there has been a desire to control dynamics of quantum systems. The generation and c- trol of quantum coherence in matter by optical means, in particular, represents a viable way to achieve this longstanding goal and semiconductor nanostructures are the most promising candidates for controllable quantum systems. Optical generation and control of coherent light-matter states in semiconductor quantum nanostructures is precisely the scope of the present book. Recently, there has been a great deal of interest in the subject of quantum coh- ence. We are currently witnessing parallel growth of activities in different physical systems that are all built around the central concept of manipulation of quantum coherence. The burgeoning activities in solid-state systems, and semiconductors in particular, have been strongly driven by the unprecedented control of coherence that previously has been demonstrated in quantum optics of atoms and molecules, and is now taking advantage of the remarkable advances in semiconductor fabrication technologies. A recent impetus to exploit the coherent quantum phenomena comes from the emergence of the quantum information paradigm.


Spins in Optically Active Quantum Dots

Spins in Optically Active Quantum Dots

Author: Oliver Gywat

Publisher: John Wiley & Sons

Published: 2010-02-01

Total Pages: 220

ISBN-13: 3527408061

DOWNLOAD EBOOK

Filling a gap in the literature, this up-to-date introduction to the field provides an overview of current experimental techniques, basic theoretical concepts, and sample fabrication methods. Following an introduction, this monograph deals with optically active quantum dots and their integration into electro-optical devices, before looking at the theory of quantum confined states and quantum dots interacting with the radiation field. Final chapters cover spin-spin interaction in quantum dots as well as spin and charge states, showing how to use single spins for break-through quantum computation. A conclusion and outlook round off the volume. The result is a primer providing the essential basic knowledge necessary for young researchers entering the field, as well as semiconductor and theoretical physicists, PhD students in physics and material sciences, electrical engineers and materials scientists.


Semiconductor Quantum Bits

Semiconductor Quantum Bits

Author: Fritz Henneberger

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 516

ISBN-13: 9814241199

DOWNLOAD EBOOK

This book highlights state-of-the-art qubit implementations in semiconductors and provides an extensive overview of this newly emerging field. Semiconductor nanostructures have huge potential as future quantum information devices as they provide various ways of qubit implementation (electron spin, electronic excitation) as well as a way to transfer


Single Quantum Dots

Single Quantum Dots

Author: Peter Michler

Publisher: Springer Science & Business Media

Published: 2003-12-09

Total Pages: 370

ISBN-13: 9783540140221

DOWNLOAD EBOOK

Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons.


Towards Solid-State Quantum Repeaters

Towards Solid-State Quantum Repeaters

Author: Kristiaan De Greve

Publisher: Springer Science & Business Media

Published: 2013-04-16

Total Pages: 159

ISBN-13: 3319000748

DOWNLOAD EBOOK

Towards Solid-State Quantum Repeaters: Ultrafast, Coherent Optical Control and Spin-Photon Entanglement in Charged InAs Quantum Dots summarizes several state-of-the-art coherent spin manipulation experiments in III-V quantum dots. Both high-fidelity optical manipulation, decoherence due to nuclear spins and the spin coherence extraction are discussed, as is the generation of entanglement between a single spin qubit and a photonic qubit. The experimental results are analyzed and discussed in the context of future quantum technologies, such as quantum repeaters. Single spins in optically active semiconductor host materials have emerged as leading candidates for quantum information processing (QIP). The quantum nature of the spin allows for encoding of stationary, memory quantum bits (qubits), and the relatively weak interaction with the host material preserves the spin coherence. On the other hand, optically active host materials permit direct interfacing with light, which can be used for all-optical qubit manipulation, and for efficiently mapping matter qubits into photonic qubits that are suited for long-distance quantum communication.


Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures

Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures

Author: Toshihide Takagahara

Publisher: Academic Press

Published: 2003-02-10

Total Pages: 508

ISBN-13: 0080525121

DOWNLOAD EBOOK

Semiconductor nanostructures are attracting a great deal of interest as the most promising device with which to implement quantum information processing and quantum computing. This book surveys the present status of nanofabrication techniques, near field spectroscopy and microscopy to assist the fabricated nanostructures. It will be essential reading for academic and industrial researchers in pure and applied physics, optics, semiconductors and microelectronics. - The first up-to-date review articles on various aspects on quantum coherence, correlation and decoherence in semiconductor nanostructures


Quantum Machines: Measurement and Control of Engineered Quantum Systems

Quantum Machines: Measurement and Control of Engineered Quantum Systems

Author: Michel Devoret

Publisher: OUP Oxford

Published: 2014-06-12

Total Pages: 601

ISBN-13: 0191503177

DOWNLOAD EBOOK

This book gathers the lecture notes of courses given at the 2011 summer school in theoretical physics in Les Houches, France, Session XCVI. What is a quantum machine? Can we say that lasers and transistors are quantum machines? After all, physicists advertise these devices as the two main spin-offs of the understanding of quantum mechanical phenomena. However, while quantum mechanics must be used to predict the wavelength of a laser and the operation voltage of a transistor, it does not intervene at the level of the signals processed by these systems. Signals involve macroscopic collective variables like voltages and currents in a circuit or the amplitude of the oscillating electric field in an electromagnetic cavity resonator. In a true quantum machine, the signal collective variables, which both inform the outside on the state of the machine and receive controlling instructions, must themselves be treated as quantum operators, just as the position of the electron in a hydrogen atom. Quantum superconducting circuits, quantum dots, and quantum nanomechanical resonators satisfy the definition of quantum machines. These mesoscopic systems exhibit a few collective dynamical variables, whose fluctuations are well in the quantum regime and whose measurement is essentially limited in precision by the Heisenberg uncertainty principle. Other engineered quantum systems based on natural, rather than artificial degrees of freedom can also qualify as quantum machines: trapped ions, single Rydberg atoms in superconducting cavities, and lattices of ultracold atoms. This book provides the basic knowledge needed to understand and investigate the physics of these novel systems.


Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics

Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics

Author: Mohamed Henini

Publisher: Elsevier

Published: 2011-07-28

Total Pages: 862

ISBN-13: 0080560474

DOWNLOAD EBOOK

The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology. Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books. - Contributors are world leaders in the field - Brings together all the factors which are essential in self-organisation of quantum nanostructures - Reviews the current status of research and development in self-organised nanostructured materials - Provides a ready source of information on a wide range of topics - Useful to any scientist who is involved in nanotechnology - Excellent starting point for workers entering the field - Serves as an excellent reference manual