ECOC is the major European conference on the technology and use of photonics for communications and related system, and is intended to provide an international forum for professionals and experts in all aspects of optical communications.
ECOC is the major European conference on the technology and use of photonics for communications and related system, and is intended to provide an international forum for professionals and experts in all aspects of optical communications.
Extracting key information from Academic Press's range of prestigious titles in optical communications, this reference gives the R&D optical fiber communications engineer a quick and easy-to-grasp understanding of the current state of the art in optical communications technology, together with some of the underlying theory, covering a broad of topics: optical waveguides, optical fibers, optical transmitters and receivers, fiber optic data communication, optical networks, and optical theory. With this reference, the engineer will be up-to-speed on the latest developments in no-time. - Provides an overview of current state-of-the-art in optical communications technology, enabling the reader to get up to speed with the latest technological developments and establish their value for product development - Brings together material from a number of authoritative sources, giving both breadth and depth of content and providing a single source of key knowledge and information which saves time in seeking information from scattered sources - Explores latest technologies and their implementation, allowing the engineer to compare and contrast approaches and solutions - Provides just enough introductory material for readers to grasp the underpinning physics, giving the engineer an accessible introduction to the underlying theory for a proper understanding
Code-division multiple access (CDMA) technology has been widely adopted in cell phones. Its astonishing success has led many to evaluate the promise of this technology for optical networks. This field has come to be known as Optical CDMA (OCDMA). Surveying the field from its infancy to the current state, Optical Code Division Multiple Access: Fundamentals and Applications offers the first comprehensive treatment of OCDMA from technology to systems. The book opens with a historical perspective, demonstrating the growth and development of the technologies that would eventually evolve into today's optical networks. Building on this background, the discussion moves to coherent and incoherent optical CDMA coding techniques and performance analysis of these codes in fiber optic transmission systems. Individual chapters provide detailed examinations of fiber Bragg grating (FBG) technology including theory, design, and applications; coherent OCDMA systems; and incoherent OCDMA systems. Turning to implementation, the book includes hybrid multiplexing techniques along with system examples and conversion techniques to connect networks that use different multiplexing platforms, state-of-the-art integration technologies, OCDMA network security issues, and OCDMA network architectures and applications, including a look at possible future directions. Featuring contributions from a team of international experts led by a pioneer in optical technology, Optical Code Division Multiple Access: Fundamentals and Applications places the concepts, techniques, and technologies in clear focus for anyone working to build next-generation optical networks.
The key technology to delivering maximum bandwidth over networks is Dense Wave-length Division Multiplexing (DWDM) Describes in detail how DWDM works and how to implement a range of transmission protocols Covers device considerations, the pros and cons of various network layer protocols, and quality of service (QoS) issues The authors are leading experts in this field and provide real-world implementation examples First book to describe the interplay between the physical and IP (Internet Protocol) layers in optical networks
This book reviews techniques used to characterize non-linear optical constants of chalcogenide glasses in bulk or thin films, and presents the properties of many chalcogenide systems. A range of applications of these glasses are surveyed, including ultra-fast switching, optical limiting, second harmonic generation and electro-optic effects. Also addressed are suitability of chalcogenide films in all-optical integrated circuits, fabrication of rib as well as ridge waveguides and of fiber gratings.
Volume IVA is devoted to progress in optical component research and development. Topics include design of optical fiber for a variety of applications, plus new materials for fiber amplifiers, modulators, optical switches, light wave devices, lasers, and high bit-rate electronics. This volume is an excellent companion to Optical Fiber Telecommunications IVB: Systems and Impairments (March 2002, ISBN: 0-12-3951739).- Fourth in a respected and comprehensive series- Authoritative authors from a range of organizations- Suitable for active lightwave R&D designers, developers, purchasers, operators, students, and analysts- Lightwave components reviewed in Volume A-Lightwave systems and impairments reviewed in Volume B- Up-to-the minute coverage
Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. (The previous edition of this title was published as Handbook of Optoelectronics, 9780750306461.) John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine.
Fiber Optic Essentials starts with a basic discussion on lightwaves and the phenomenon of refraction and reflection. It then goes on to introduces the reader to the field of fiber optics and covers some of the recent developments, such as fiber amplifiers, dispersion compensation and nonlinear effects. A number of other applications are also presented. Examples and comparison with everyday experience are provided wherever possible to help the reader's comprehension. Diagrams are also included to aid in the visualization of certain concepts.
Solitons in Optical Fiber Systems Discover a robust exploration of the main properties and behaviors of solitons in fiber systems In Solitons in Optical Fiber Systems, distinguished researcher Dr. Mário F. S. Ferreira delivers a thorough treatment of the main characteristics of solitons in optical fiber communication systems and fiber devices, paying special attention to stationary and pulsating dissipative soliton pulses. The book discusses the technical aspects associated with the physical background and the theoretical description of soliton characteristics under different conditions. The author employs numerical analyses and variational approaches to describe soliton evolution and describes the phenomenon of supercontinuum generation and various solitonic effects observed in highly nonlinear fibers, like photonic crystal fibers. Readers will learn about different applications of fiber solitons in transmission systems, fiber lasers, couplers, and pulse compression schemes, as well as complex Ginzburg-Landau equations, which are used to model different types of dissipative systems. The book also includes: A thorough introduction to solitons, including the linear and nonlinear effects of a wave, the discovery of solitary waves, and the discovery of solitons in optical fibers An exploration of fiber dispersion and nonlinearity, including optical fiber dispersion, the pulse propagation equation, and the impact of fiber dispersion Practical discussions of nonlinear effects in optical fibers, including self-phase modulation, cross-phase modulations, four-wave mixing, and stimulated raman scattering In-depth treatments of solitons in optical fibers, including modulation instability, dark solitons, bistable solitons, XPM-paired solitons, and the variational approach Perfect for senior undergraduate and graduate students in courses dealing with fiber-optics technology, Solitons in Optical Fiber Systems is also an ideal resource for engineers and technicians in the fiber-optics industry and researchers of nonlinear fiber optics.