Intelligent Comparisons II: Operator Inequalities and Approximations

Intelligent Comparisons II: Operator Inequalities and Approximations

Author: George A. Anastassiou

Publisher: Springer

Published: 2017-01-13

Total Pages: 231

ISBN-13: 331951475X

DOWNLOAD EBOOK

This compact book focuses on self-adjoint operators’ well-known named inequalities and Korovkin approximation theory, both in a Hilbert space environment. It is the first book to study these aspects, and all chapters are self-contained and can be read independently. Further, each chapter includes an extensive list of references for further reading. The book’s results are expected to find applications in many areas of pure and applied mathematics. Given its concise format, it is especially suitable for use in related graduate classes and research projects. As such, the book offers a valuable resource for researchers and graduate students alike, as well as a key addition to all science and engineering libraries.


Operators, Inequalities and Approximation

Operators, Inequalities and Approximation

Author: Binod Chandra Tripathy

Publisher: Springer

Published: 2024-08-11

Total Pages: 0

ISBN-13: 9789819732371

DOWNLOAD EBOOK

The book collects chapters on operator theory as well as related approximation results and analytic inequalities. It discusses the properties of various types of operators, methods for approximating such operators, proximity point problems, applications of approximation methods in other fields such as engineering, and some analytic inequalities. It seeks to capture both the pure and applied aspects of the topics discussed. Several of the concepts covered in the book are fundamental to many aspects of applied science and engineering. The intriguing and novel aspect of the book is that it focuses on foundational aspects of the topics as well as reasonable application ideas and inputs useful information for practical applications in a variety of other scientific and engineering fields.


Approximation Theory and Analytic Inequalities

Approximation Theory and Analytic Inequalities

Author: Themistocles M. Rassias

Publisher: Springer Nature

Published: 2021-07-21

Total Pages: 546

ISBN-13: 3030606228

DOWNLOAD EBOOK

This contributed volume focuses on various important areas of mathematics in which approximation methods play an essential role. It features cutting-edge research on a wide spectrum of analytic inequalities with emphasis on differential and integral inequalities in the spirit of functional analysis, operator theory, nonlinear analysis, variational calculus, featuring a plethora of applications, making this work a valuable resource. The reader will be exposed to convexity theory, polynomial inequalities, extremal problems, prediction theory, fixed point theory for operators, PDEs, fractional integral inequalities, multidimensional numerical integration, Gauss–Jacobi and Hermite–Hadamard type inequalities, Hilbert-type inequalities, and Ulam’s stability of functional equations. Contributions have been written by eminent researchers, providing up-to-date information and several results which may be useful to a wide readership including graduate students and researchers working in mathematics, physics, economics, operational research, and their interconnections.


Approximation with Positive Linear Operators and Linear Combinations

Approximation with Positive Linear Operators and Linear Combinations

Author: Vijay Gupta

Publisher: Springer

Published: 2017-06-27

Total Pages: 193

ISBN-13: 3319587951

DOWNLOAD EBOOK

This book presents a systematic overview of approximation by linear combinations of positive linear operators, a useful tool used to increase the order of approximation. Fundamental and recent results from the past decade are described with their corresponding proofs. The volume consists of eight chapters that provide detailed insight into the representation of monomials of the operators Ln , direct and inverse estimates for a broad class of positive linear operators, and case studies involving finite and unbounded intervals of real and complex functions. Strong converse inequalities of Type A in terminology of Ditzian–Ivanov for linear combinations of Bernstein and Bernstein–Kantorovich operators and various Voronovskaja-type estimates for some linear combinations are analyzed and explained. Graduate students and researchers in approximation theory will find the list of open problems in approximation of linear combinations useful. The book serves as a reference for graduate and postgraduate courses as well as a basis for future study and development.


Operator Inequalities of Ostrowski and Trapezoidal Type

Operator Inequalities of Ostrowski and Trapezoidal Type

Author: Silvestru Sever Dragomir

Publisher: Springer Science & Business Media

Published: 2011-12-08

Total Pages: 121

ISBN-13: 1461417791

DOWNLOAD EBOOK

Inequalities of Ostrowski and Trapezoidal Type for Functions of Selfadjoint Operators on Hilbert Spaces presents recent results concerning Ostrowski and Trapezoidal type inequalities for continuous functions of bounded Selfadjoint operators on complex Hilbert spaces. The first chapter recalls some fundamental facts concerning bounded Selfadjoint operators on complex Hilbert spaces. The generalized Schwarz’s inequality for positive Selfadjoint operators as well as some results for the spectrum of this class of operators are presented. The author also introduces and explores the fundamental results for polynomials in a linear operator, continuous functions of selfadjoint operators that will play a central role throughout the book. The following chapter is devoted to the Ostrowski’s type inequalities, which provide sharp error estimates in approximating the value of a function by its integral mean and can be used to obtain a priory error bounds for different quadrature rules in approximating the Riemann integral by different Riemann sums. The author also presents recent results extending Ostrowski inequality in various directions for continuous functions of selfadjoint operators in complex Hilbert spaces. The final chapter illustrates recent results obtained in extending trapezoidal type inequality in various directions for continuous functions of selfadjoint operators in complex Hilbert spaces. Applications for mid-point inequalities and some elementary functions of operators as also provided. This book is intended for use by researchers in various fields of Linear Operator Theory and Mathematical Inequalities. As well as postgraduate students and scientists applying inequalities in their specific areas.


Operator and Norm Inequalities and Related Topics

Operator and Norm Inequalities and Related Topics

Author: Richard M. Aron

Publisher: Springer Nature

Published: 2022-08-10

Total Pages: 822

ISBN-13: 3031021045

DOWNLOAD EBOOK

Inequalities play a central role in mathematics with various applications in other disciplines. The main goal of this contributed volume is to present several important matrix, operator, and norm inequalities in a systematic and self-contained fashion. Some powerful methods are used to provide significant mathematical inequalities in functional analysis, operator theory and numerous fields in recent decades. Some chapters are devoted to giving a series of new characterizations of operator monotone functions and some others explore inequalities connected to log-majorization, relative operator entropy, and the Ando-Hiai inequality. Several chapters are focused on Birkhoff–James orthogonality and approximate orthogonality in Banach spaces and operator algebras such as C*-algebras from historical perspectives to current development. A comprehensive account of the boundedness, compactness, and restrictions of Toeplitz operators can be found in the book. Furthermore, an overview of the Bishop-Phelps-Bollobás theorem is provided. The state-of-the-art of Hardy-Littlewood inequalities in sequence spaces is given. The chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.


Linear Operator Equations

Linear Operator Equations

Author: M. Thamban Nair

Publisher: World Scientific

Published: 2009

Total Pages: 264

ISBN-13: 9812835652

DOWNLOAD EBOOK

Many problems in science and engineering have their mathematical formulation as an operator equation Tx=y, where T is a linear or nonlinear operator between certain function spaces. In practice, such equations are solved approximately using numerical methods, as their exact solution may not often be possible or may not be worth looking for due to physical constraints. In such situations, it is desirable to know how the so-called approximate solution approximates the exact solution, and what the error involved in such procedures would be. This book is concerned with the investigation of the above theoretical issues related to approximately solving linear operator equations. The main tools used for this purpose are basic results from functional analysis and some rudimentary ideas from numerical analysis. To make this book more accessible to readers, no in-depth knowledge on these disciplines is assumed for reading this book.


Applications of q-Calculus in Operator Theory

Applications of q-Calculus in Operator Theory

Author: Ali Aral

Publisher: Springer Science & Business Media

Published: 2013-05-09

Total Pages: 275

ISBN-13: 1461469465

DOWNLOAD EBOOK

The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas such as computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics. ​​This monograph is an introduction to combining approximation theory and q-Calculus with applications, by using well- known operators. The presentation is systematic and the authors include a brief summary of the notations and basic definitions of q-calculus before delving into more advanced material. The many applications of q-calculus in the theory of approximation, especially on various operators, which includes convergence of operators to functions in real and complex domain​ forms the gist of the book. This book is suitable for researchers and students in mathematics, physics and engineering, and for professionals who would enjoy exploring the host of mathematical techniques and ideas that are collected and discussed in the book.


Approximation Theory Using Positive Linear Operators

Approximation Theory Using Positive Linear Operators

Author: Radu Paltanea

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 208

ISBN-13: 1461220580

DOWNLOAD EBOOK

Offers an examination of the multivariate approximation case Special focus on the Bernstein operators, including applications, and on two new classes of Bernstein-type operators Many general estimates, leaving room for future applications (e.g. the B-spline case) Extensions to approximation operators acting on spaces of vector functions Historical perspective in the form of previous significant results