Overall, this work combines together - in two volumes - four formally distinct topics of modern analysis and their applications: Hardy classes of holomorphic functions; spectral theory of Hankel and Toeplitz operators; function models for linear operators and free interpolations; and infinite-dimensional system theory and signal processing. This, the second volume, contains parts C and D of the whole.
Together with the companion volume by the same author, Operators, Functions, and Systems: An Easy Reading. Volume 1: Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, Vol. 92, AMS, 2002, this unique work combines four major topics of modern analysis and its applications: A. Hardy classes of holomorphic functions, B. Spectral theory of Hankel and Toeplitz operators, C. Function models for linear operators and free interpolations, and D. Infinite-dimensional system theory and signal processing. This volume contains Parts C and D. Function models for linear operators and free interpolations: This is a universal topic and, indeed, is the most influential operator theory technique in the post-spectral-theorem era. In this book, its capacity is tested by solving generalized Carleson-type interpolation problems. Infinite-dimensional system theory and signal processing: This topic is the touchstone of the three previously developed techniques. The presence of this applied topic in a pure mathematics environment reflects important changes in the mathematical landscape of the last 20 years, in that the role of the main consumer and customer of harmonic, complex, and operator analysis has more and more passed from differential equations, scattering theory, and probability to control theory and signal processing. This and the companion volume are geared toward a wide audience of readers, from graduate students to professional mathematicians. They develop an elementary approach to the subject while retaining an expert level that can be applied in advanced analysis and selected applications.
This book is dedicated to Victor Emmanuilovich Katsnelson on the occasion of his 75th birthday and celebrates his broad mathematical interests and contributions.Victor Emmanuilovich’s mathematical career has been based mainly at the Kharkov University and the Weizmann Institute. However, it also included a one-year guest professorship at Leipzig University in 1991, which led to him establishing close research contacts with the Schur analysis group in Leipzig, a collaboration that still continues today. Reflecting these three periods in Victor Emmanuilovich's career, present and former colleagues have contributed to this book with research inspired by him and presentations on their joint work. Contributions include papers in function theory (Favorov-Golinskii, Friedland-Goldman-Yomdin, Kheifets-Yuditskii) , Schur analysis, moment problems and related topics (Boiko-Dubovoy, Dyukarev, Fritzsche-Kirstein-Mädler), extension of linear operators and linear relations (Dijksma-Langer, Hassi-de Snoo, Hassi -Wietsma) and non-commutative analysis (Ball-Bolotnikov, Cho-Jorgensen).
This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.
This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.
This concise monograph explores how core ideas in Hardy space function theory and operator theory continue to be useful and informative in new settings, leading to new insights for noncommutative multivariable operator theory. Beginning with a review of the confluence of system theory ideas and reproducing kernel techniques, the book then covers representations of backward-shift-invariant subspaces in the Hardy space as ranges of observability operators, and representations for forward-shift-invariant subspaces via a Beurling–Lax representer equal to the transfer function of the linear system. This pair of backward-shift-invariant and forward-shift-invariant subspace form a generalized orthogonal decomposition of the ambient Hardy space. All this leads to the de Branges–Rovnyak model theory and characteristic operator function for a Hilbert space contraction operator. The chapters that follow generalize the system theory and reproducing kernel techniques to enable an extension of the ideas above to weighted Bergman space multivariable settings.
This volume contains a selection of papers, from experts in the area, on multidimensional operator theory. Topics considered include the non-commutative case, function theory in the polydisk, hyponormal operators, hyperanalytic functions, and holomorphic deformations of linear differential equations. Operator Theory, Systems Theory and Scattering Theory will be of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
The trusted handbook—now in a new edition This newly revised handbook presents a multifaceted view of systems engineering from process and systems management perspectives. It begins with a comprehensive introduction to the subject and provides a brief overview of the thirty-four chapters that follow. This introductory chapter is intended to serve as a "field guide" that indicates why, when, and how to use the material that follows in the handbook. Topical coverage includes: systems engineering life cycles and management; risk management; discovering system requirements; configuration management; cost management; total quality management; reliability, maintainability, and availability; concurrent engineering; standards in systems engineering; system architectures; systems design; systems integration; systematic measurements; human supervisory control; managing organizational and individual decision-making; systems reengineering; project planning; human systems integration; information technology and knowledge management; and more. The handbook is written and edited for systems engineers in industry and government, and to serve as a university reference handbook in systems engineering and management courses. By focusing on systems engineering processes and systems management, the editors have produced a long-lasting handbook that will make a difference in the design of systems of all types that are large in scale and/or scope.