Operator Theory, Functional Analysis and Applications

Operator Theory, Functional Analysis and Applications

Author: M. Amélia Bastos

Publisher: Birkhäuser

Published: 2021-04-01

Total Pages: 657

ISBN-13: 9783030519445

DOWNLOAD EBOOK

This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.


Operator Theory in Function Spaces

Operator Theory in Function Spaces

Author: Kehe Zhu

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 368

ISBN-13: 0821839659

DOWNLOAD EBOOK

This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.


Noncommutative Function-Theoretic Operator Theory and Applications

Noncommutative Function-Theoretic Operator Theory and Applications

Author: Joseph A. Ball

Publisher: Cambridge University Press

Published: 2021-12-16

Total Pages: 440

ISBN-13: 1009020102

DOWNLOAD EBOOK

This concise monograph explores how core ideas in Hardy space function theory and operator theory continue to be useful and informative in new settings, leading to new insights for noncommutative multivariable operator theory. Beginning with a review of the confluence of system theory ideas and reproducing kernel techniques, the book then covers representations of backward-shift-invariant subspaces in the Hardy space as ranges of observability operators, and representations for forward-shift-invariant subspaces via a Beurling–Lax representer equal to the transfer function of the linear system. This pair of backward-shift-invariant and forward-shift-invariant subspace form a generalized orthogonal decomposition of the ambient Hardy space. All this leads to the de Branges–Rovnyak model theory and characteristic operator function for a Hilbert space contraction operator. The chapters that follow generalize the system theory and reproducing kernel techniques to enable an extension of the ideas above to weighted Bergman space multivariable settings.


Operator Theory, Function Spaces, and Applications

Operator Theory, Function Spaces, and Applications

Author: Tanja Eisner

Publisher: Birkhäuser

Published: 2016-09-24

Total Pages: 240

ISBN-13: 3319313835

DOWNLOAD EBOOK

This volume collects a selected number of papers presented at the International Workshop on Operator Theory and its Applications (IWOTA) held in July 2014 at Vrije Universiteit in Amsterdam. Main developments in the broad area of operator theory are covered, with special emphasis on applications to science and engineering. The volume also presents papers dedicated to the eightieth birthday of Damir Arov and to the sixty-fifth birthday of Leiba Rodman, both leading figures in the area of operator theory and its applications, in particular, to systems theory.


Operator Theory, Functional Analysis and Applications

Operator Theory, Functional Analysis and Applications

Author: M. Amélia Bastos

Publisher: Springer Nature

Published: 2021-03-31

Total Pages: 654

ISBN-13: 3030519457

DOWNLOAD EBOOK

This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.


Introduction to Matrix Analysis and Applications

Introduction to Matrix Analysis and Applications

Author: Fumio Hiai

Publisher: Springer Science & Business Media

Published: 2014-02-06

Total Pages: 337

ISBN-13: 3319041509

DOWNLOAD EBOOK

Matrices can be studied in different ways. They are a linear algebraic structure and have a topological/analytical aspect (for example, the normed space of matrices) and they also carry an order structure that is induced by positive semidefinite matrices. The interplay of these closely related structures is an essential feature of matrix analysis. This book explains these aspects of matrix analysis from a functional analysis point of view. After an introduction to matrices and functional analysis, it covers more advanced topics such as matrix monotone functions, matrix means, majorization and entropies. Several applications to quantum information are also included. Introduction to Matrix Analysis and Applications is appropriate for an advanced graduate course on matrix analysis, particularly aimed at studying quantum information. It can also be used as a reference for researchers in quantum information, statistics, engineering and economics.


Nonlinear Functional Analysis in Banach Spaces and Banach Algebras

Nonlinear Functional Analysis in Banach Spaces and Banach Algebras

Author: Aref Jeribi

Publisher: CRC Press

Published: 2015-08-14

Total Pages: 369

ISBN-13: 1498733891

DOWNLOAD EBOOK

Uncover the Useful Interactions of Fixed Point Theory with Topological StructuresNonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications is the first book to tackle the topological fixed point theory for block operator matrices w


Linear Operators and Matrices

Linear Operators and Matrices

Author: Israel Gohberg

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 282

ISBN-13: 3034881819

DOWNLOAD EBOOK

In September 1998, during the 'International Workshop on Analysis and Vibrat ing Systems' held in Canmore, Alberta, Canada, it was decided by a group of participants to honour Peter Lancaster on the occasion of his 70th birthday with a volume in the series 'Operator Theory: Advances and Applications'. Friends and colleagues responded enthusiastically to this proposal and within a short time we put together the volume which is now presented to the reader. Regarding accep tance of papers we followed the usual rules of the journal 'Integral Equations and Operator Theory'. The papers are dedicated to different problems in matrix and operator theory, especially to the areas in which Peter contributed so richly. At our request, Peter agreed to write an autobiographical paper, which appears at the beginning of the volume. It continues with the list of Peter's publications. We believe that this volume will pay tribute to Peter on his outstanding achievements in different areas of mathematics. 1. Gohberg, H. Langer P ter Lancast r *1929 Operator Theory: Advances and Applications, Vol. 130, 1- 7 © 2001 Birkhiiuser Verlag Basel/Switzerland My Life and Mathematics Peter Lancaster I was born in Appleby, a small county town in the north of England, on November 14th, 1929. I had two older brothers and was to have one younger sister. My family moved around the north of England as my father's work in an insurance company required.


Function Spaces, Theory and Applications

Function Spaces, Theory and Applications

Author: Ilia Binder

Publisher: Springer Nature

Published: 2024-01-12

Total Pages: 487

ISBN-13: 3031392701

DOWNLOAD EBOOK

The focus program on Analytic Function Spaces and their Applications took place at Fields Institute from July 1st to December 31st, 2021. Hilbert spaces of analytic functions form one of the pillars of complex analysis. These spaces have a rich structure and for more than a century have been studied by many prominent mathematicians. They also have several essential applications in other fields of mathematics and engineering, e.g., robust control engineering, signal and image processing, and theory of communication. The most important Hilbert space of analytic functions is the Hardy class H2. However, its close cousins, e.g. the Bergman space A2, the Dirichlet space D, the model subspaces Kt, and the de Branges-Rovnyak spaces H(b), have also been the center of attention in the past two decades. Studying the Hilbert spaces of analytic functions and the operators acting on them, as well as their applications in other parts of mathematics or engineering were the main subjects of this program. During the program, the world leading experts on function spaces gathered and discussed the new achievements and future venues of research on analytic function spaces, their operators, and their applications in other domains. With more than 250 hours of lectures by prominent mathematicians, a wide variety of topics were covered. More explicitly, there were mini-courses and workshops on Hardy Spaces, Dirichlet Spaces, Bergman Spaces, Model Spaces, Interpolation and Sampling, Riesz Bases, Frames and Signal Processing, Bounded Mean Oscillation, de Branges-Rovnyak Spaces, Operators on Function Spaces, Truncated Toeplitz Operators, Blaschke Products and Inner Functions, Discrete and Continuous Semigroups of Composition Operators, The Corona Problem, Non-commutative Function Theory, Drury-Arveson Space, and Convergence of Scattering Data and Non-linear Fourier Transform. At the end of each week, there was a high profile colloquium talk on the current topic. The program also contained two semester-long advanced courses on Schramm Loewner Evolution and Lattice Models and Reproducing Kernel Hilbert Space of Analytic Functions. The current volume features a more detailed version of some of the talks presented during the program.