On-Wafer Microwave Measurements and De-embedding

On-Wafer Microwave Measurements and De-embedding

Author: Errikos Lourandakis

Publisher: Artech House

Published: 2016-07-31

Total Pages: 251

ISBN-13: 1630813710

DOWNLOAD EBOOK

This new authoritative resource presents the basics of network analyzer measurement equipment and troubleshooting errors involved in the on-wafer microwave measurement process. This book bridges the gap between theoretical and practical information using real-world practices that address all aspects of on-wafer passive device characterization in the microwave frequency range up to 60GHz. Readers find data and measurements from silicon integrated passive devices fabricated and tested in advance CMOS technologies. Basic circuit equations, terms and fundamentals of time and frequency domain analysis are covered. This book also explores the basics of vector network analyzers (VNA), two port S-parameter measurement routines, signal flow graphs, network theory, error models and VNA calibrations with the use of calibration standards.


Microwave De-embedding

Microwave De-embedding

Author: Giovanni Crupi

Publisher: Academic Press

Published: 2013-11-09

Total Pages: 481

ISBN-13: 0124045928

DOWNLOAD EBOOK

This groundbreaking book is the first to give an introduction to microwave de-embedding, showing how it is the cornerstone for waveform engineering. The authors of each chapter clearly explain the theoretical concepts, providing a foundation that supports linear and non-linear measurements, modelling and circuit design. Recent developments and future trends in the field are covered throughout, including successful strategies for low-noise and power amplifier design. This book is a must-have for those wishing to understand the full potential of the microwave de-embedding concept to achieve successful results in the areas of measurements, modelling, and design at high frequencies. With this book you will learn: - The theoretical background of high-frequency de-embedding for measurements, modelling, and design - Details on applying the de-embedding concept to the transistor's linear, non-linear, and noise behaviour - The impact of de-embedding on low-noise and power amplifier design - The recent advances and future trends in the field of high-frequency de-embedding - Presents the theory and practice of microwave de-embedding, from the basic principles to recent advances and future trends - Written by experts in the field, all of whom are leading researchers in the area - Each chapter describes theoretical background and gives experimental results and practical applications - Includes forewords by Giovanni Ghione and Stephen Maas


Microwave De-embedding

Microwave De-embedding

Author: Gilles Dambrine

Publisher: Elsevier Inc. Chapters

Published: 2013-11-09

Total Pages: 42

ISBN-13: 0128068566

DOWNLOAD EBOOK

This chapter aims to describe experimental tools and techniques used for on-wafer millimeter (mm)-wave characterizations of silicon-based devices under the small-signal regime. We discuss the basics of scattering parameters (S parameters), high-frequency (HF) noise concept and measurement facilities, and expert details concerning experimental procedures. In this chapter, we describe first the basic notions of the S-parameters concept and its limitations, as well of as those HF noise. Secondly, the main experimental tools such as mm-wave vectorial network analyzer, noise setup, and on-wafer station are depicted. The third part concerns the description and the methodology of on-wafer calibration and de-embedding techniques applied for mm-wave advanced silicon devices. Finally, the last section focuses on the presentation and description of several examples of device characterizations. The main objective of this chapter is to propose a tradeoff between basic information and details of experience.


Microwave Systems and Applications

Microwave Systems and Applications

Author: Sotirios Goudos

Publisher: BoD – Books on Demand

Published: 2017-01-11

Total Pages: 436

ISBN-13: 9535128671

DOWNLOAD EBOOK

Microwave systems are key components of every modern wireless communication system. The main objective of this book was to collect as many different state-of-the-art studies as possible in order to cover in a single volume the main aspects of microwave systems and applications. This book contains 17 chapters written by acknowledged experts, researchers, academics, and microwave engineers, providing comprehensive information and covering a wide range of topics on all aspects of microwave systems and applications. This book is divided into four parts. The first part is devoted to microwave components. The second part deals with microwave ICs and innovative techniques for on-chip antenna design. The third part presents antenna design cases for microwave systems. Finally, the last part covers different applications of microwave systems.


Microwave De-embedding

Microwave De-embedding

Author: Manuel Yarlequé

Publisher: Elsevier Inc. Chapters

Published: 2013-11-09

Total Pages: 99

ISBN-13: 0128068620

DOWNLOAD EBOOK

This chapter aims to describe methodologies and techniques for de-embedding device measurements from extrinsic measurements by characterizing the parasitic network surrounding the intrinsic device, through the use of a three-dimensional (3D) physical model of the network and its electromagnetic (EM) analysis. The electromagnetic behavior is obtained employing 3D EM solvers and internal ports. In the first part, the de-embedding processes for field-effect transistor (FET) devices to be used for monolithic microwave integrated circuit designs are studied by four different approaches; in the second part of this chapter, the de-embedding of FET devices for hybrid circuit design purposes is described.


On-Wafer Calibration Techniques Enabling Accurate Characterization of High-Performance Silicon Devices at the mm-Wave Range and Beyond

On-Wafer Calibration Techniques Enabling Accurate Characterization of High-Performance Silicon Devices at the mm-Wave Range and Beyond

Author: Andrej Rumiantsev

Publisher: CRC Press

Published: 2022-09-01

Total Pages: 279

ISBN-13: 1000792854

DOWNLOAD EBOOK

The increasing demand for more content, services, and security drives the development of high-speed wireless technologies, optical communication, automotive radar, imaging and sensing systems and many other mm-wave and THz applications. S-parameter measurement at mm-wave and sub-mm wave frequencies plays a crucial role in the modern IC design debug. Most importantly, however, is the step of device characterization for development and optimization of device model parameters for new technologies. Accurate characterization of the intrinsic device in its entire operation frequency range becomes extremely important and this task is very challenging. This book presents solutions for accurate mm-wave characterization of advanced semiconductor devices. It guides through the process of development, implementation and verification of the in-situ calibration methods optimized for high-performance silicon technologies. Technical topics discussed in the book include: Specifics of S-parameter measurements of planar structures Complete mathematical solution for lumped-standard based calibration methods, including the transfer Thru-Match-Reflect (TMR) algorithms Design guideline and examples for the on-wafer calibration standards realized in both advanced SiGe BiCMOS and RF CMOS processes Methods for verification of electrical characteristics of calibration standards and accuracy of the in-situ calibration results Comparison of the new technique vs. conventional approaches: the probe-tip calibration and the pad parasitic de-embedding for various device types, geometries and model parameters New aspects of the on-wafer RF measurements at mmWave frequency range and calibration assurance.


RF Measurements of Die and Packages

RF Measurements of Die and Packages

Author: Scott A. Wartenberg

Publisher: Artech House

Published: 2002

Total Pages: 256

ISBN-13: 9781580532730

DOWNLOAD EBOOK

The recent explosion of the RF wireless integrated circuits (IC), coupled with higher operating speeds in digital IC's has made accurate RF testing of IC's vital. This ground-breaking resource explains the fundamentals of performing accurate RF measurements of die and packages. It offers you practical advice on how to use coplanar probes and test fixtures in the lab for RF on-wafer die and package characterization. It also details how to build separate RF test systems for noise, high-power, and thermal testing as well as de-embed the test system's parasitic effects to get the die's RF performance. This book is a handy, practical resource for RFIC and MMIC designers as well as high-frequency digital IC designers, IC test engineers, and IC manufacturing test engineers.


Microwave Circuits for 24 GHz Automotive Radar in Silicon-based Technologies

Microwave Circuits for 24 GHz Automotive Radar in Silicon-based Technologies

Author: Vadim Issakov

Publisher: Springer Science & Business Media

Published: 2010-08-05

Total Pages: 218

ISBN-13: 3642135986

DOWNLOAD EBOOK

There are continuous efforts focussed on improving road traffic safety worldwide. Numerous vehicle safety features have been invented and standardized over the past decades. Particularly interesting are the driver assistance systems, since these can considerably reduce the number of accidents by supporting drivers’ perception of their surroundings. Many driver assistance features rely on radar-based sensors. Nowadays the commercially available automotive front-end sensors are comprised of discrete components, thus making the radar modules highly-priced and suitable for integration only in premium class vehicles. Realization of low-cost radar fro- end circuits would enable their implementation in inexpensive economy cars, c- siderably contributing to traffic safety. Cost reduction requires high-level integration of the microwave front-end c- cuitry, specifically analog and digital circuit blocks co-located on a single chip. - cent developments of silicon-based technologies, e.g. CMOS and SiGe:C bipolar, make them suitable for realization of microwave sensors. Additionally, these te- nologies offer the necessary integration capability. However, the required output power and temperature stability, necessary for automotive radar sensor products, have not yet been achieved in standard digital CMOS technologies. On the other hand, SiGe bipolar technology offers excellent high-frequency characteristics and necessary output power for automotive applications, but has lower potential for - alization of digital blocks than CMOS.


Frequency Measurement Technology

Frequency Measurement Technology

Author: Ignacio Llamas-Garro

Publisher: Artech House

Published: 2017-12-31

Total Pages: 225

ISBN-13: 1630815160

DOWNLOAD EBOOK

This unique first-of-its-kind resource provides practical coverage of the design and implementation of frequency measurement receivers, which aid in identifying unknown signals. The technologies used in frequency measurement interferometry-based on-delay lines and filters are explored in this book. Practitioners also find concrete examples of microwave photonics implementations. The designs and concepts that cover conventional photonic instantaneous frequency measurement (IFM) circuits are explained. This book provides details on new designs for microwave photonic circuits and reconfigurable frequency measurement (RFM) circuits using diodes and MicroElectroMechanical Systems (MEMS). This book explains the many diverse applications of frequency measurement that are used in defense, radar, and communications. The instrumentation used to perform frequency measurements is explained, including the use of block analysis for network and spectrum analyzers and calibration techniques. Readers learn the advantages of using frequency measurement based on microwave/RF techniques, including immunity to electromagnetic interference, low loss, compatibility with fiber signal distribution, and parallel processing signals. Moreover, readers gain insight into the future of frequency measurement receivers. The book examines both the underpinnings and the implementation of frequency measurement receivers using many diverse technological platforms.


Measurement and Modeling of Silicon Heterostructure Devices

Measurement and Modeling of Silicon Heterostructure Devices

Author: John D. Cressler

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 189

ISBN-13: 1351834762

DOWNLOAD EBOOK

When you see a nicely presented set of data, the natural response is: “How did they do that; what tricks did they use; and how can I do that for myself?” Alas, usually, you must simply keep wondering, since such tricks-of- the-trade are usually held close to the vest and rarely divulged. Shamefully ignored in the technical literature, measurement and modeling of high-speed semiconductor devices is a fine art. Robust measuring and modeling at the levels of performance found in modern SiGe devices requires extreme dexterity in the laboratory to obtain reliable data, and then a valid model to fit that data. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume focuses on measurement and modeling of high-speed silicon heterostructure devices. The chapter authors provide experience-based tricks-of-the-trade and the subtle nuances of measuring and modeling advanced devices, making this an important reference for the semiconductor industry. It includes easy-to-reference appendices covering topics such as the properties of silicon and germanium, the generalized Moll-Ross relations, the integral charge-control model, and sample SiGe HBT compact model parameters.