The Book of Potentially Catastrophic Science

The Book of Potentially Catastrophic Science

Author: Sean Connolly

Publisher: Workman Publishing Company

Published: 2017-03-07

Total Pages: 322

ISBN-13: 0761189866

DOWNLOAD EBOOK

It’s never been more important to engage a child's scientific curiosity, and Sean Connolly knows just how to do it—with lively, hands-on, seemingly "dangerous" experiments that pop, ooze, crash, and teach! Now, the author of The Book of Totally Irresponsible Science, takes it one step further: He leads kids through the history of science, and then creates amazing yet simple experiments that demonstrate key scientific principles. Tame fire just like a Neanderthal with the Fahrenheit 451 experiment. Round up all your friends and track the spread of "disease" using body glitter with an experiment inspired by Edward Jenner, the vaccination pioneer who's credited with saving more lives than any other person in history. Rediscover the wheel and axle with the ancient Sumerians, and perform an astounding experiment demonstrating the theory of angular momentum. Build a simple telescope—just like Galileo's—and find the four moons he discovered orbiting Jupiter (an act that helped land him in prison). Take a less potentially catastrophic approach to electricity than Ben Franklin did with the Lightning Mouth experiment. Re-create the Hadron Collider in a microwave with marshmallows, calculator, and a ruler—it won't jeopardize Earth with a simulated Big Bang, but will demonstrate the speed of light. And it's tasty! By letting kids stand on the shoulders of Aristotle, Newton, Einstein, the Wright brothers, Marie Curie, Darwin, Watson and Crick, and more, The Book of Potentially Catastrophic Science is an uncommonly engaging guide to science, and the great stories of the men and women behind the science.


Reproducibility and Replicability in Science

Reproducibility and Replicability in Science

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2019-10-20

Total Pages: 257

ISBN-13: 0309486165

DOWNLOAD EBOOK

One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.


Another Science is Possible

Another Science is Possible

Author: Isabelle Stengers

Publisher: John Wiley & Sons

Published: 2018-01-16

Total Pages: 220

ISBN-13: 1509521844

DOWNLOAD EBOOK

Like fast food, fast science is quickly prepared, not particularly good, and it clogs up the system. Efforts to tackle our most pressing issues have been stymied by conflict within the scientific community and mixed messages symptomatic of a rushed approach. What is more, scientific research is being shaped by the bubbles and crashes associated with economic speculation and the market. A focus on conformism, competitiveness, opportunism and flexibility has made it extremely difficult to present cases of failure to the public, for fear that it will lose confidence in science altogether. In this bold new book, distinguished philosopher Isabelle Stengers shows that research is deeply intertwined with broader social interests, which means that science cannot race ahead in isolation but must learn instead to slow down. Stengers offers a path to an alternative science, arguing that researchers should stop seeing themselves as the 'thinking, rational brain of humanity' and refuse to allow their expertise to be used to shut down the concerns of the public, or to spread the belief that scientific progress is inevitable and will resolve all of society's problems. Rather, science must engage openly and honestly with an intelligent public and be clear about the kind of knowledge it is capable of producing. This timely and accessible book will be of great interest to students, scholars and policymakers in a wide range of fields, as well anyone concerned with the role of science and its future.


Broader Impacts of Science on Society

Broader Impacts of Science on Society

Author: Bruce J. MacFadden

Publisher: Cambridge University Press

Published: 2019-10-03

Total Pages: 321

ISBN-13: 1108421725

DOWNLOAD EBOOK

Invaluable guidance on how scientists can communicate the societal benefits of their work to the public and funding agencies. This will help scientists submit proposals to the US National Science Foundation and other funding agencies with a 'Broader Impacts' section, as well as helping to develop successful wider outreach activities.


Make It Stick

Make It Stick

Author: Peter C. Brown

Publisher: Harvard University Press

Published: 2014-04-14

Total Pages: 330

ISBN-13: 0674729013

DOWNLOAD EBOOK

To most of us, learning something "the hard way" implies wasted time and effort. Good teaching, we believe, should be creatively tailored to the different learning styles of students and should use strategies that make learning easier. Make It Stick turns fashionable ideas like these on their head. Drawing on recent discoveries in cognitive psychology and other disciplines, the authors offer concrete techniques for becoming more productive learners. Memory plays a central role in our ability to carry out complex cognitive tasks, such as applying knowledge to problems never before encountered and drawing inferences from facts already known. New insights into how memory is encoded, consolidated, and later retrieved have led to a better understanding of how we learn. Grappling with the impediments that make learning challenging leads both to more complex mastery and better retention of what was learned. Many common study habits and practice routines turn out to be counterproductive. Underlining and highlighting, rereading, cramming, and single-minded repetition of new skills create the illusion of mastery, but gains fade quickly. More complex and durable learning come from self-testing, introducing certain difficulties in practice, waiting to re-study new material until a little forgetting has set in, and interleaving the practice of one skill or topic with another. Speaking most urgently to students, teachers, trainers, and athletes, Make It Stick will appeal to all those interested in the challenge of lifelong learning and self-improvement.


Inquiry and the National Science Education Standards

Inquiry and the National Science Education Standards

Author: National Research Council

Publisher: National Academies Press

Published: 2000-05-03

Total Pages: 223

ISBN-13: 0309064767

DOWNLOAD EBOOK

Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€"the "eyes glazed over" syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€"a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand "why we can't teach the way we used to." "Inquiry" refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm.


Improving How Universities Teach Science

Improving How Universities Teach Science

Author: Carl Wieman

Publisher: Harvard University Press

Published: 2017-05-22

Total Pages: 179

ISBN-13: 0674978927

DOWNLOAD EBOOK

Too many universities remain wedded to outmoded ways of teaching science in spite of extensive research showing that there are much more effective methods. Too few departments ask whether what happens in their lecture halls is effective at helping students to learn and how they can encourage their faculty to teach better. But real change is possible, and Carl Wieman shows us how it can be brought about. Improving How Universities Teach Science draws on Wieman’s unparalleled experience to provide a blueprint for educators seeking sustainable improvements in science teaching. Wieman created the Science Education Initiative (SEI), a program implemented across thirteen science departments at the universities of Colorado and British Columbia, to support the widespread adoption of the best research-based approaches to science teaching. The program’s data show that in the most successful departments 90 percent of faculty adopted better methods. Wieman identifies what factors helped and hindered the adoption of good teaching methods. He also gives detailed, effective, and tested strategies for departments and institutions to measure and improve the quality of their teaching while limiting the demands on faculty time. Among all of the commentary addressing shortcomings in higher education, Wieman’s lessons on improving teaching and learning stand out. His analysis and solutions are not limited to just one lecture hall or course but deal with changing entire departments and universities. For those who want to improve how universities teach science to the next generation, Wieman’s work is a critical first step.


The Science of Fate

The Science of Fate

Author: Hannah Critchlow

Publisher: Hodder & Stoughton

Published: 2019-05-02

Total Pages: 256

ISBN-13: 1473659302

DOWNLOAD EBOOK

**THE SUNDAY TIMES BESTSELLER** 'A truly fascinating - if unnerving - read' DAILY TELEGRAPH 'Acute, mind-opening, highly accessible - this book doesn't just explain how our lives might pan out, it helps us live better' BETTANY HUGHES 'A humane and highly readable account of the neuroscience that underpins our ideas of free will and fate' PROFESSOR DAVID RUNCIMAN *** So many of us believe that we are free to shape our own destiny. But what if free will doesn't exist? What if our lives are largely predetermined, hardwired in our brains - and our choices over what we eat, who we fall in love with, even what we believe are not real choices at all? Neuroscience is challenging everything we think we know about ourselves, revealing how we make decisions and form our own reality, unaware of the role of our unconscious minds. Did you know, for example, that: * You can carry anxieties and phobias across generations of your family? * Your genes and pleasure and reward receptors in your brain will determine how much you eat? * We can sniff out ideal partners with genes that give our offspring the best chance of survival? Leading neuroscientist Hannah Critchlow draws vividly from everyday life and other experts in their field to show the extraordinary potential, as well as dangers, which come with being able to predict our likely futures - and looking at how we can alter what's in store for us. Lucid, illuminating, awe-inspiring The Science of Fate revolutionises our understanding of who we are - and empowers us to help shape a better future for ourselves and the wider world.


Visible Learning for Science, Grades K-12

Visible Learning for Science, Grades K-12

Author: John Almarode

Publisher: Corwin Press

Published: 2018-02-15

Total Pages: 131

ISBN-13: 1506394191

DOWNLOAD EBOOK

In the best science classrooms, teachers see learning through the eyes of their students, and students view themselves as explorers. But with so many instructional approaches to choose from—inquiry, laboratory, project-based learning, discovery learning—which is most effective for student success? In Visible Learning for Science, the authors reveal that it’s not which strategy, but when, and plot a vital K-12 framework for choosing the right approach at the right time, depending on where students are within the three phases of learning: surface, deep, and transfer. Synthesizing state-of-the-art science instruction and assessment with over fifteen years of John Hattie’s cornerstone educational research, this framework for maximum learning spans the range of topics in the life and physical sciences. Employing classroom examples from all grade levels, the authors empower teachers to plan, develop, and implement high-impact instruction for each phase of the learning cycle: Surface learning: when, through precise approaches, students explore science concepts and skills that give way to a deeper exploration of scientific inquiry. Deep learning: when students engage with data and evidence to uncover relationships between concepts—students think metacognitively, and use knowledge to plan, investigate, and articulate generalizations about scientific connections. Transfer learning: when students apply knowledge of scientific principles, processes, and relationships to novel contexts, and are able to discern and innovate to solve complex problems. Visible Learning for Science opens the door to maximum-impact science teaching, so that students demonstrate more than a year’s worth of learning for a year spent in school.