On the Robustness of Neural Network: Attacks and Defenses

On the Robustness of Neural Network: Attacks and Defenses

Author: Minhao Cheng

Publisher:

Published: 2021

Total Pages: 158

ISBN-13:

DOWNLOAD EBOOK

Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to adversarial examples. That is, a slightly modified example could be easily generated and fool a well-trained image classifier based on deep neural networks (DNNs) with high confidence. This makes it difficult to apply neural networks in security-critical areas. To find such examples, we first introduce and define adversarial examples. In the first part, we then discuss how to build adversarial attacks in both image and discrete domains. For image classification, we introduce how to design an adversarial attacker in three different settings. Among them, we focus on the most practical setup for evaluating the adversarial robustness of a machine learning system with limited access: the hard-label black-box attack setting for generating adversarial examples, where limited model queries are allowed and only the decision is provided to a queried data input. For the discrete domain, we first talk about its difficulty and introduce how to conduct the adversarial attack on two applications. While crafting adversarial examples is an important technique to evaluate the robustness of DNNs, there is a huge need for improving the model robustness as well. Enhancing model robustness under new and even adversarial environments is a crucial milestone toward building trustworthy machine learning systems. In the second part, we talk about the methods to strengthen the model's adversarial robustness. We first discuss attack-dependent defense. Specifically, we first discuss one of the most effective methods for improving the robustness of neural networks: adversarial training and its limitations. We introduce a variant to overcome its problem. Then we take a different perspective and introduce attack-independent defense. We summarize the current methods and introduce a framework-based vicinal risk minimization. Inspired by the framework, we introduce self-progressing robust training. Furthermore, we discuss the robustness trade-off problem and introduce a hypothesis and propose a new method to alleviate it.


The Good, the Bad and the Ugly

The Good, the Bad and the Ugly

Author: Xiaoting Li

Publisher:

Published: 2022

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Neural networks have been widely adopted to address different real-world problems. Despite the remarkable achievements in machine learning tasks, they remain vulnerable to adversarial examples that are imperceptible to humans but can mislead the state-of-the-art models. More specifically, such adversarial examples can be generalized to a variety of common data structures, including images, texts and networked data. Faced with the significant threat that adversarial attacks pose to security-critical applications, in this thesis, we explore the good, the bad and the ugly of adversarial machine learning. In particular, we focus on the investigation on the applicability of adversarial attacks in real-world scenarios for social good and their defensive paradigms. The rapid progress of adversarial attacking techniques aids us to better understand the underlying vulnerabilities of neural networks that inspires us to explore their potential usage for good purposes. In real world, social media has extremely reshaped our daily life due to their worldwide accessibility, but its data privacy also suffers from inference attacks. Based on the fact that deep neural networks are vulnerable to adversarial examples, we attempt a novel perspective of protecting data privacy in social media and design a defense framework called Adv4SG, where we introduce adversarial attacks to forge latent feature representations and mislead attribute inference attacks. Considering that text data in social media shares the most significant privacy of users, we investigate how text-space adversarial attacks can be leveraged to protect users' attributes. Specifically, we integrate social media property to advance Adv4SG, and introduce cost-effective mechanisms to expedite attribute protection over text data under the black-box setting. By conducting extensive experiments on real-world social media datasets, we show that Adv4SG is an appealing method to mitigate the inference attacks. Second, we extend our study to more complex networked data. Social network is more of a heterogeneous environment which is naturally represented as graph-structured data, maintaining rich user activities and complicated relationships among them. This enables attackers to deploy graph neural networks (GNNs) to automate attribute inferences from user features and relationships, which makes such privacy disclosure hard to avoid. To address that, we take advantage of the vulnerability of GNNs to adversarial attacks, and propose a new graph poisoning attack, called AttrOBF to mislead GNNs into misclassification and thus protect personal attribute privacy against GNN-based inference attacks on social networks. AttrOBF provides a more practical formulation through obfuscating optimal training user attribute values for real-world social graphs. Our results demonstrate the promising potential of applying adversarial attacks to attribute protection on social graphs. Third, we introduce a watermarking-based defense strategy against adversarial attacks on deep neural networks. With the ever-increasing arms race between defenses and attacks, most existing defense methods ignore fact that attackers can possibly detect and reproduce the differentiable model, which leaves the window for evolving attacks to adaptively evade the defense. Based on this observation, we propose a defense mechanism that creates a knowledge gap between attackers and defenders by imposing a secret watermarking process into standard deep neural networks. We analyze the experimental results of a wide range of watermarking algorithms in our defense method against state-of-the-art attacks on baseline image datasets, and validate the effectiveness our method in protesting adversarial examples. Our research expands the investigation of enhancing the deep learning model robustness against adversarial attacks and unveil the insights of applying adversary for social good. We design Adv4SG and AttrOBF to take advantage of the superiority of adversarial attacking techniques to protect the social media user's privacy on the basis of discrete textual data and networked data, respectively. Both of them can be realized under the practical black-box setting. We also provide the first attempt at utilizing digital watermark to increase model's randomness that suppresses attacker's capability. Through our evaluation, we validate their effectiveness and demonstrate their promising value in real-world use.


Evaluation and Design of Robust Neural Network Defenses

Evaluation and Design of Robust Neural Network Defenses

Author: Nicholas Carlini

Publisher:

Published: 2018

Total Pages: 138

ISBN-13:

DOWNLOAD EBOOK

Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to test-time evasion attacks adversarial examples): inputs specifically designed by an adversary to cause a neural network to misclassify them. This makes applying neural networks in security-critical areas concerning. In this dissertation, we introduce a general framework for evaluating the robustness of neural network through optimization-based methods. We apply our framework to two different domains, image recognition and automatic speech recognition, and find it provides state-of-the-art results for both. To further demonstrate the power of our methods, we apply our attacks to break 14 defenses that have been proposed to alleviate adversarial examples. We then turn to the problem of designing a secure classifier. Given this apparently-fundamental vulnerability of neural networks to adversarial examples, instead of taking an existing classifier and attempting to make it robust, we construct a new classifier which is provably robust by design under a restricted threat model. We consider the domain of malware classification, and construct a neural network classifier that is can not be fooled by an insertion adversary, who can only insert new functionality, and not change existing functionality. We hope this dissertation will provide a useful starting point for both evaluating and constructing neural networks robust in the presence of an adversary.


Adversarial Robustness for Machine Learning

Adversarial Robustness for Machine Learning

Author: Pin-Yu Chen

Publisher: Academic Press

Published: 2022-08-20

Total Pages: 300

ISBN-13: 0128242574

DOWNLOAD EBOOK

Adversarial Robustness for Machine Learning summarizes the recent progress on this topic and introduces popular algorithms on adversarial attack, defense and veri?cation. Sections cover adversarial attack, veri?cation and defense, mainly focusing on image classi?cation applications which are the standard benchmark considered in the adversarial robustness community. Other sections discuss adversarial examples beyond image classification, other threat models beyond testing time attack, and applications on adversarial robustness. For researchers, this book provides a thorough literature review that summarizes latest progress in the area, which can be a good reference for conducting future research. In addition, the book can also be used as a textbook for graduate courses on adversarial robustness or trustworthy machine learning. While machine learning (ML) algorithms have achieved remarkable performance in many applications, recent studies have demonstrated their lack of robustness against adversarial disturbance. The lack of robustness brings security concerns in ML models for real applications such as self-driving cars, robotics controls and healthcare systems. - Summarizes the whole field of adversarial robustness for Machine learning models - Provides a clearly explained, self-contained reference - Introduces formulations, algorithms and intuitions - Includes applications based on adversarial robustness


Adversarial Machine Learning

Adversarial Machine Learning

Author: Yevgeniy Vorobeychik

Publisher: Morgan & Claypool Publishers

Published: 2018-08-08

Total Pages: 172

ISBN-13: 168173396X

DOWNLOAD EBOOK

This is a technical overview of the field of adversarial machine learning which has emerged to study vulnerabilities of machine learning approaches in adversarial settings and to develop techniques to make learning robust to adversarial manipulation. After reviewing machine learning concepts and approaches, as well as common use cases of these in adversarial settings, we present a general categorization of attacks on machine learning. We then address two major categories of attacks and associated defenses: decision-time attacks, in which an adversary changes the nature of instances seen by a learned model at the time of prediction in order to cause errors, and poisoning or training time attacks, in which the actual training dataset is maliciously modified. In our final chapter devoted to technical content, we discuss recent techniques for attacks on deep learning, as well as approaches for improving robustness of deep neural networks. We conclude with a discussion of several important issues in the area of adversarial learning that in our view warrant further research. The increasing abundance of large high-quality datasets, combined with significant technical advances over the last several decades have made machine learning into a major tool employed across a broad array of tasks including vision, language, finance, and security. However, success has been accompanied with important new challenges: many applications of machine learning are adversarial in nature. Some are adversarial because they are safety critical, such as autonomous driving. An adversary in these applications can be a malicious party aimed at causing congestion or accidents, or may even model unusual situations that expose vulnerabilities in the prediction engine. Other applications are adversarial because their task and/or the data they use are. For example, an important class of problems in security involves detection, such as malware, spam, and intrusion detection. The use of machine learning for detecting malicious entities creates an incentive among adversaries to evade detection by changing their behavior or the content of malicious objects they develop. Given the increasing interest in the area of adversarial machine learning, we hope this book provides readers with the tools necessary to successfully engage in research and practice of machine learning in adversarial settings.


Ccs '17

Ccs '17

Author: Bhavani Thuraisingham

Publisher:

Published: 2017-10-30

Total Pages:

ISBN-13: 9781450349468

DOWNLOAD EBOOK

CCS '17: 2017 ACM SIGSAC Conference on Computer and Communications Security Oct 30, 2017-Nov 03, 2017 Dallas, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.


Adversarial Machine Learning

Adversarial Machine Learning

Author: Aneesh Sreevallabh Chivukula

Publisher: Springer Nature

Published: 2023-03-06

Total Pages: 316

ISBN-13: 3030997723

DOWNLOAD EBOOK

A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.


Strengthening Deep Neural Networks

Strengthening Deep Neural Networks

Author: Katy Warr

Publisher: "O'Reilly Media, Inc."

Published: 2019-07-03

Total Pages: 233

ISBN-13: 1492044903

DOWNLOAD EBOOK

As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come


Evaluating and Understanding Adversarial Robustness in Deep Learning

Evaluating and Understanding Adversarial Robustness in Deep Learning

Author: Jinghui Chen

Publisher:

Published: 2021

Total Pages: 175

ISBN-13:

DOWNLOAD EBOOK

Deep Neural Networks (DNNs) have made many breakthroughs in different areas of artificial intelligence. However, recent studies show that DNNs are vulnerable to adversarial examples. A tiny perturbation on an image that is almost invisible to human eyes could mislead a well-trained image classifier towards misclassification. This raises serious security concerns and trustworthy issues towards the robustness of Deep Neural Networks in solving real world challenges. Researchers have been working on this problem for a while and it has further led to a vigorous arms race between heuristic defenses that propose ways to defend against existing attacks and newly-devised attacks that are able to penetrate such defenses. While the arm race continues, it becomes more and more crucial to accurately evaluate model robustness effectively and efficiently under different threat models and identify those ``falsely'' robust models that may give us a false sense of robustness. On the other hand, despite the fast development of various kinds of heuristic defenses, their practical robustness is still far from satisfactory, and there are actually little algorithmic improvements in terms of defenses during recent years. This suggests that there still lacks further understandings toward the fundamentals of adversarial robustness in deep learning, which might prevent us from designing more powerful defenses. \\The overarching goal of this research is to enable accurate evaluations of model robustness under different practical settings as well as to establish a deeper understanding towards other factors in the machine learning training pipeline that might affect model robustness. Specifically, we develop efficient and effective Frank-Wolfe attack algorithms under white-box and black-box settings and a hard-label adversarial attack, RayS, which is capable of detecting ``falsely'' robust models. In terms of understanding adversarial robustness, we propose to theoretically study the relationship between model robustness and data distributions, the relationship between model robustness and model architectures, as well as the relationship between model robustness and loss smoothness. The techniques proposed in this dissertation form a line of researches that deepens our understandings towards adversarial robustness and could further guide us in designing better and faster robust training methods.