The study of finite groups factorised as a product of two or more subgroups has become a subject of great interest during the last years with applications not only in group theory, but also in other areas like cryptography and coding theory. It has experienced a big impulse with the introduction of some permutability conditions. The aim of this book is to gather, order, and examine part of this material, including the latest advances made, give some new approach to some topics, and present some new subjects of research in the theory of finite factorised groups. Some of the topics covered by this book include groups whose subnormal subgroups are normal, permutable, or Sylow-permutable, products of nilpotent groups, and an exhaustive structural study of totally and mutually permutable products of finite groups and their relation with classes of groups. This monograph is mainly addressed to graduate students and senior researchers interested in the study of products and permutability of finite groups. A background in finite group theory and a basic knowledge of representation theory and classes of groups is recommended to follow it.
This is the second of three volumes devoted to elementary finite p-group theory. Similar to the first volume, hundreds of important results are analyzed and, in many cases, simplified. Important topics presented in this monograph include: (a) classification of p-groups all of whose cyclic subgroups of composite orders are normal, (b) classification of 2-groups with exactly three involutions, (c) two proofs of Ward's theorem on quaternion-free groups, (d) 2-groups with small centralizers of an involution, (e) classification of 2-groups with exactly four cyclic subgroups of order 2n > 2, (f) two new proofs of Blackburn's theorem on minimal nonmetacyclic groups, (g) classification of p-groups all of whose subgroups of index p2 are abelian, (h) classification of 2-groups all of whose minimal nonabelian subgroups have order 8, (i) p-groups with cyclic subgroups of index p2 are classified. This volume contains hundreds of original exercises (with all difficult exercises being solved) and an extended list of about 700 open problems. The book is based on Volume 1, and it is suitable for researchers and graduate students of mathematics with a modest background on algebra.
This is the first of three volumes of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this monograph include: (a) counting of subgroups, with almost all main counting theorems being proved, (b) regular p-groups and regularity criteria, (c) p-groups of maximal class and their numerous characterizations, (d) characters of p-groups, (e) p-groups with large Schur multiplier and commutator subgroups, (f) (p‒1)-admissible Hall chains in normal subgroups, (g) powerful p-groups, (h) automorphisms of p-groups, (i) p-groups all of whose nonnormal subgroups are cyclic, (j) Alperin's problem on abelian subgroups of small index. The book is suitable for researchers and graduate students of mathematics with a modest background on algebra. It also contains hundreds of original exercises (with difficult exercises being solved) and a comprehensive list of about 700 open problems.
This is the third volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume: impact of minimal nonabelian subgroups on the structure of p-groups, classification of groups all of whose nonnormal subgroups have the same order, degrees of irreducible characters of p-groups associated with finite algebras, groups covered by few proper subgroups, p-groups of element breadth 2 and subgroup breadth 1, exact number of subgroups of given order in a metacyclic p-group, soft subgroups, p-groups with a maximal elementary abelian subgroup of order p2, p-groups generated by certain minimal nonabelian subgroups, p-groups in which certain nonabelian subgroups are 2-generator. The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.
Main description: This is the first of three volumes on finite p-group theory. It presents the state of the art and in addition contains numerous new and easy proofs of famous theorems, many exercises (some of them with solutions), and about 1500 open problems. It is expected to be useful to certain applied mathematics areas, such as combinatorics, coding theory, and computer sciences. The book should also be easily comprehensible to students and scientists with some basic knowledge of group theory and algebra.
This is the fifth volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume include theory of linear algebras and Lie algebras. The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.
Here is the second volume of a revised edition of P.M. Cohn's classic three-volume text Algebra, widely regarded as one of the most outstanding introductory algebra textbooks. Volume Two focuses on applications. The text is supported by worked examples, with full proofs, there are numerous exercises with occasional hints, and some historical remarks.