Doing Meta-Analysis with R

Doing Meta-Analysis with R

Author: Mathias Harrer

Publisher: CRC Press

Published: 2021-09-15

Total Pages: 500

ISBN-13: 1000435636

DOWNLOAD EBOOK

Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book


On the Heterogeneity Bias of Pooled Estimators in Stationary VAR Specifications

On the Heterogeneity Bias of Pooled Estimators in Stationary VAR Specifications

Author: Alessandro Rebucci

Publisher:

Published: 2006

Total Pages: 45

ISBN-13:

DOWNLOAD EBOOK

This paper studies asymptotically the bias of the fixed effect (FE) estimator induced by cross-section heterogeneity in the slope parameters of stationary vector autoregressions (VARs). The paper also compares the FE, the mean group estimator (MG), and a simple instrumental variable alternative (IV) in Monte Carlo simulations. The main results are: (i) asymptotically, the heterogeneity bias of the FE may be more or less severe in VAR specifications than in standard dynamic panel data specifications; (ii) in Monte Carlo simulations, slope heterogeneity must be relatively high to be a source of concern for pooled estimators; (iii) when this happens, the panel must be longer than a typical macro dataset for the MG to be a viable solution.


Econometric Analysis of Cross Section and Panel Data, second edition

Econometric Analysis of Cross Section and Panel Data, second edition

Author: Jeffrey M. Wooldridge

Publisher: MIT Press

Published: 2010-10-01

Total Pages: 1095

ISBN-13: 0262232588

DOWNLOAD EBOOK

The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.


Panel Data Econometrics with R

Panel Data Econometrics with R

Author: Yves Croissant

Publisher: John Wiley & Sons

Published: 2018-08-10

Total Pages: 435

ISBN-13: 1118949188

DOWNLOAD EBOOK

Panel Data Econometrics with R provides a tutorial for using R in the field of panel data econometrics. Illustrated throughout with examples in econometrics, political science, agriculture and epidemiology, this book presents classic methodology and applications as well as more advanced topics and recent developments in this field including error component models, spatial panels and dynamic models. They have developed the software programming in R and host replicable material on the book’s accompanying website.


Modeling Ordered Choices

Modeling Ordered Choices

Author: William H. Greene

Publisher: Cambridge University Press

Published: 2010-04-08

Total Pages: 383

ISBN-13: 1139485954

DOWNLOAD EBOOK

It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.


Functional Form and Heterogeneity in Models for Count Data

Functional Form and Heterogeneity in Models for Count Data

Author: William Greene

Publisher: Now Publishers Inc

Published: 2007

Total Pages: 120

ISBN-13: 160198054X

DOWNLOAD EBOOK

This study presents several extensions of the most familiar models for count data, the Poisson and negative binomial models. We develop an encompassing model for two well-known variants of the negative binomial model (the NB1 and NB2 forms). We then analyze some alternative approaches to the standard log gamma model for introducing heterogeneity into the loglinear conditional means for these models. The lognormal model provides a versatile alternative specification that is more flexible (and more natural) than the log gamma form, and provides a platform for several "two part" extensions, including zero inflation, hurdle, and sample selection models. (We briefly present some alternative approaches to modeling heterogeneity.) We also resolve some features in Hausman, Hall and Griliches (1984, Economic models for count data with an application to the patents-R & D relationship, Econometrica 52, 909-938) widely used panel data treatments for the Poisson and negative binomial models that appear to conflict with more familiar models of fixed and random effects. Finally, we consider a bivariate Poisson model that is also based on the lognormal heterogeneity model. Two recent applications have used this model. We suggest that the correlation estimated in their model frameworks is an ambiguous measure of the correlation of the variables of interest, and may substantially overstate it. We conclude with a detailed application of the proposed methods using the data employed in one of the two aforementioned bivariate Poisson studies


Using R for Principles of Econometrics

Using R for Principles of Econometrics

Author: Constantin Colonescu

Publisher: Lulu.com

Published: 2017-12-28

Total Pages: 278

ISBN-13: 1387473611

DOWNLOAD EBOOK

This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.


PPP Strikes Back

PPP Strikes Back

Author: Mr. Haroon Mumtaz

Publisher: International Monetary Fund

Published: 2003-04-01

Total Pages: 43

ISBN-13: 1451895534

DOWNLOAD EBOOK

We show the importance of a dynamic aggregation bias in accounting for the PPP puzzle. We prove that established time-series and panel methods substantially exaggerate the persistence of real exchange rates because of heterogeneity in the dynamics of disaggregated relative prices. When heterogeneity is properly taken into account, estimates of the real exchange rate half-life fall dramatically, to little more than one year, or significantly below Rogoff''s "consensus view" of three to five years. We show that corrected estimates are consistent with plausible nominal rigidities, thus, arguably, solving the PPP puzzle.


Heterogeneity and Persistence in Returns to Wealth

Heterogeneity and Persistence in Returns to Wealth

Author: Andreas Fagereng

Publisher: International Monetary Fund

Published: 2018-07-27

Total Pages: 69

ISBN-13: 1484370066

DOWNLOAD EBOOK

We provide a systematic analysis of the properties of individual returns to wealth using twelve years of population data from Norway’s administrative tax records. We document a number of novel results. First, during our sample period individuals earn markedly different average returns on their financial assets (a standard deviation of 14%) and on their net worth (a standard deviation of 8%). Second, heterogeneity in returns does not arise merely from differences in the allocation of wealth between safe and risky assets: returns are heterogeneous even within asset classes. Third, returns are positively correlated with wealth: moving from the 10th to the 90th percentile of the financial wealth distribution increases the return by 3 percentage points - and by 17 percentage points when the same exercise is performed for the return to net worth. Fourth, wealth returns exhibit substantial persistence over time. We argue that while this persistence partly reflects stable differences in risk exposure and assets scale, it also reflects persistent heterogeneity in sophistication and financial information, as well as entrepreneurial talent. Finally, wealth returns are (mildly) correlated across generations. We discuss the implications of these findings for several strands of the wealth inequality debate.


Discrete Choice Methods with Simulation

Discrete Choice Methods with Simulation

Author: Kenneth Train

Publisher: Cambridge University Press

Published: 2009-07-06

Total Pages: 399

ISBN-13: 0521766559

DOWNLOAD EBOOK

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.