Advanced Space Propulsion Systems

Advanced Space Propulsion Systems

Author: Martin Tajmar

Publisher: Springer Science & Business Media

Published: 2012-09-08

Total Pages: 139

ISBN-13: 3709105471

DOWNLOAD EBOOK

Space propulsion systems have a great influence on our ability to travel to other planets or how cheap a satellite can provide TV programs. This book provides an up-to-date overview of all kinds of propulsion systems ranging from classical rocket technology, nuclear propulsion to electric propulsion systems, and further to micro-, propellantless and even breakthrough propulsion, which is a new program under development at NASA. The author shows the limitations of the present concepts and how they could look like in the future. Starting from historical developments, the reader is taken on a journey showing the amazing technology that has been put on hold for decades to be rediscovered in the near future for questions like how we can even reach other stars within a human lifetime. The author is actively involved in advanced propulsion research and contributes with his own experience to many of the presented topics. The book is written for anyone who is interested in how space travel can be revolutionized.


Future Spacecraft Propulsion Systems

Future Spacecraft Propulsion Systems

Author: Claudio Bruno

Publisher: Springer Science & Business Media

Published: 2009-03-20

Total Pages: 574

ISBN-13: 3540888144

DOWNLOAD EBOOK

An understandable perspective on the types of space propulsion systems necessary to enable low-cost space flights to Earth orbit and to the Moon and the future developments necessary for exploration of the solar system and beyond to the stars.


Rocket and Spacecraft Propulsion

Rocket and Spacecraft Propulsion

Author: Martin J. L. Turner

Publisher: Springer Science & Business Media

Published: 2006-08-29

Total Pages: 344

ISBN-13: 3540270418

DOWNLOAD EBOOK

The revised edition of this practical, hands-on book discusses the launch vehicles in use today throughout the world, and includes the latest details on advanced systems being developed, such as electric and nuclear propulsion. The author covers the fundamentals, from the basic principles of rocket propulsion and vehicle dynamics through the theory and practice of liquid and solid propellant motors, to new and future developments. He provides a serious exposition of the principles and practice of rocket propulsion, from the point of view of the user who is not an engineering specialist.


Evaluation of Advanced Propulsion Options for the Next Manned Transportation System

Evaluation of Advanced Propulsion Options for the Next Manned Transportation System

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-07-17

Total Pages: 150

ISBN-13: 9781723044861

DOWNLOAD EBOOK

The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities. Spears, L. T. and Kramer, R. D. Unspecified Center HYDROGEN OXYGEN ENGINES; LAUNCH VEHICLES; PROPULSION SYSTEM CONFIGURATIONS; SPACE SHUTTLE MAIN ENGINE; SPACE TRANSPORTATION SYSTEM; SPACECRAFT PROPULSION; EVOLUTION (DEVELOPMENT); LAUNCHING; PROPULSION SYSTEM PERFORMANCE; SPACE TRANSPORTATION...


A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs

A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs

Author: National Research Council

Publisher: National Academies Press

Published: 2007-01-14

Total Pages: 288

ISBN-13: 0309102472

DOWNLOAD EBOOK

Rocket and air-breathing propulsion systems are the foundation on which planning for future aerospace systems rests. A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs assesses the existing technical base in these areas and examines the future Air Force capabilities the base will be expected to support. This report also defines gaps and recommends where future warfighter capabilities not yet fully defined could be met by current science and technology development plans.


Movement And Maneuver In Deep Space

Movement And Maneuver In Deep Space

Author: Brian E. Hans

Publisher:

Published: 2020-11-24

Total Pages: 74

ISBN-13: 9781608881932

DOWNLOAD EBOOK

From the authors' abstract: "This analytical study looks at the importance of Deep Space Operations and recommends an approach for senior policy leaders. Section 1 presents a capability requirements definition with candidate solutions and technology strategies. Section 2 recommends an acquisition and organizational approach. Section 3 provides an extended strategic rationale for deep space operations as a national priority." And from the Introduction: [this essay] "presents capability requirements, potential solutions, and strategic rationale for achieving movement and maneuver advantage in deep space. In this context, deep space is anything beyond geosynchronous Earth orbit (GEO). Driving the research are two primary assumptions underpinning the need for investment in deep space propulsion. The first assumption is that growing international activity, commerce, and industry in space extends the global commons, thus creating a military-economic imperative for the United States Department of Defense (DoD) to expand its protection of U.S. interests by defending space lines of communication. Although there are wide-ranging reasons to expand the space-faring capabilities of the human species, from the capitalistic to the existential, the fact of its occurrence offers the U.S. immense strategic opportunity. Section 1, operating on this assumption, recommends capability-based requirements for deep space operations given a projected future operating environment.The second driving assumption underpinning this study is that improved movement and maneuver capabilities in deep space offer a wide array of benefits for the current National Security Enterprise, and for this reason alone demands attention in the form of disciplined investment. Furthermore, because the core functional capability required for deep space operations is in-space propulsion, the requirement necessitates a materiel solution.


Electric Propulsion Development

Electric Propulsion Development

Author: Ernst Stuhlinger

Publisher: Elsevier

Published: 1963-01-01

Total Pages: 763

ISBN-13: 0323163386

DOWNLOAD EBOOK

Progress in Astronautics and Aeronautics, Volume 9: Electric Propulsion Development covers the proceedings of the Second Electric Propulsion Conference of the American Rocker Society, held in Berkeley, California on March 14-16, 1962. The conference focuses on the existing problems in electric propulsion and their possible solutions. This book is organized into four sections encompassing 35 chapters. The first section deals with the thermodynamics of arcs; the problems of heat and momentum transfer; the chemical processes within arcs; the arc system materials; and the arc jet design problems. The second section considers the problems of ion systems, the various ion sources, and the neutralization of ion beams. This section also looks into the basic ionization processes, the production and charging of heavy particles, the corrosive properties of cesium, and the ion-optical designs. The third section describes various plasma systems, including helical transmission lines, pulsed pinch accelerators, coaxial systems, and j x B accelerators. The theoretical analyses of these systems are briefly examined. The fourth section includes papers on flight testing of electric propulsion models, on vertical rocket probes, and on satellites, This section also discusses some advanced concepts in electric propulsion, such as air scooping during ascent through the atmosphere, systems design and optimization, and planetary and interplanetary missions. This book is of great value to physicists, space engineers and designers, as well as researchers in the fields of astronautics and aeronautics.