On the Evaluation of High Temperature Creep-fatigue Responses of Structures

On the Evaluation of High Temperature Creep-fatigue Responses of Structures

Author: Daniele Barbera

Publisher:

Published: 2017

Total Pages: 290

ISBN-13:

DOWNLOAD EBOOK

Multiple creep dwells within the load cycle can be considered and improvements are made to the cyclic loop construction. In order to make the eDSCA more accurate for creep damage assessment, the stress modifed ductility exhaustion method is implemented combining the advantages of both stress and strain based methods. Thirdly, several case studies on creep-fatigue interaction are discussed thanks to the flexibility of the LMMF including the detrimental effect of creep-ratchetting. Furthermore, a new potentially dangerous mechanism involving the sudden accumulation of plastic strain during the creep dwell is identified and studied by numerical means.


Evaluation of Creep-Fatigue Damage Based on Simplified Model Test Approach

Evaluation of Creep-Fatigue Damage Based on Simplified Model Test Approach

Author:

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Current methods used in the ASME Code, Subsection NH for the evaluation of creep-fatigue damage are based on the separation of elevated temperature cyclic damage into two parts, creep damage and fatigue damage. This presents difficulties in both evaluation of test data and determination of cyclic damage in design. To avoid these difficulties, an alternative approach was identified, called the Simplified Model Test or SMT approach based on the use of creep-fatigue hold time test data from test specimens with elastic follow-up conservatively designed to bound the response of general structural components of interest. A key feature of the methodology is the use of the results of elastic analysis directly in design evaluation similar to current methods in the ASME Code, Subsection NB. Although originally developed for current material included in Subsection NH, recent interest in the application of Alloy 617 for components operating at very high temperatures has caused renewed interest in the SMT approach because it provides an alternative to the proposed restriction on the use of current Subsection NH simplified methods at very high temperatures. A comprehensive review and assessment of five representative simplified methods for creep-fatigue damage evaluation is presented in Asayama [1]. In this review the SMT methodology was identified as the best long term approach but the need for test data precluded its near term implementation. Asayama and Jetter [2] is a summary of the more comprehensive report by Asayama [1] with a summary of the SMT approach presented by Jetter [3].


Proceedings: Creep & Fracture in High Temperature Components

Proceedings: Creep & Fracture in High Temperature Components

Author: I. A. Shibli

Publisher: DEStech Publications, Inc

Published: 2009

Total Pages: 661

ISBN-13: 160595005X

DOWNLOAD EBOOK

A compendium of European and worldwide research investigating creep, fatigue and failure behaviors in metals under high-temperature and other service stresses. It helps set the standards for coordinating creep data and for maintaining defect-free quality in high-temperature metals and metal-based weldments.


Creep-Fatigue Fracture: Analysis of Internal Damage

Creep-Fatigue Fracture: Analysis of Internal Damage

Author: Weisheng Zhou

Publisher: Springer

Published: 2024-06-02

Total Pages: 0

ISBN-13: 9789819718788

DOWNLOAD EBOOK

This book presents a detailed analysis of the processes of internal damage and healing of damage in high-temperature creep-fatigue. This analysis is based on experimental results and a three-dimensional visualization and simulation method. It focuses on inner cracking type fracture, which is essential to consider for creep-fatigue in actual equipment and structures used at high temperatures for long periods of time. In this book, systematic studies of the fracture are presented by introducing three-dimensional simulation and visualization methods. This book is for designers and researchers in industry specializing in strength of materials at high temperatures. It is also for a postgraduate or higher academic audience specializing in mechanical engineering and materials science engineering. In reading the book it is expected that readers will acquire knowledge of evaluation techniques for high-temperature creep-fatigue damage. In addition, this book allows readers to improve the accuracy of damage evaluation, design materials for longer lifetimes, and apply the described techniques to other materials.


High Temperature Structural Design (ESIS Publication 12)

High Temperature Structural Design (ESIS Publication 12)

Author: L. H. Larsson

Publisher: Wiley-Blackwell

Published: 1992

Total Pages: 504

ISBN-13:

DOWNLOAD EBOOK

The papers presented in High Temperature Structural Design, ESIS Publication 12, are the reviewed and revised versions of the lectures presented at the eponymous Venice Conference. This conference was deliberately tailored to include all industrial areas where high temperature structural integrity problems are encountered, and an effort was made to cover several different aspects of structural design, including material modelling and experience feedback, and to achieve a cross-fertilization of ideas between different application areas. The twenty two papers are grouped together under four headings, namely Design Practice, Stress and Strain Analysis Methods, damage Evaluation, and, finally, In-Service Experience. Representing the current state-of-the-art in high temperature structural design, this volume can be wholeheartedly recommended, not only to engineering designers, but also to physicists and to materials scientists concerned with the integrity of structures at high temperatures in all areas of industry.


Modeling High Temperature Materials Behavior for Structural Analysis

Modeling High Temperature Materials Behavior for Structural Analysis

Author: Konstantin Naumenko

Publisher: Springer

Published: 2016-05-11

Total Pages: 381

ISBN-13: 331931629X

DOWNLOAD EBOOK

This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.


Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR.

Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR.

Author:

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.


Creep and Fracture in High Temperature Components

Creep and Fracture in High Temperature Components

Author: European Creep Collaborative Committee

Publisher: DEStech Publications, Inc

Published: 2005

Total Pages: 1136

ISBN-13: 9781932078497

DOWNLOAD EBOOK

Provides information from around the world on creep in multiple high-temperature metals, alloys, and advanced materials.