The new edition of this book detailing the theory of linear-Hilbert space operators and their use in quantum physics contains two new chapters devoted to properties of quantum waveguides and quantum graphs. The bibliography contains 130 new items.
This book exposes the internal structure of non-self-adjoint operators acting on complex separable infinite dimensional Hilbert space, by analyzing and studying the commutant of operators. A unique presentation of the theorem of Cowen-Douglas operators is given. The authors take the strongly irreducible operator as a basic model, and find complete similarity invariants of Cowen-Douglas operators by using K-theory, complex geometry and operator algebra tools.
The topic of this book is the theory of state spaces of operator algebras and their geometry. The states are of interest because they determine representations of the algebra, and its algebraic structure is in an intriguing and fascinating fashion encoded in the geometry of the state space. From the beginning the theory of operator algebras was motivated by applications to physics, but recently it has found unexpected new applica tions to various fields of pure mathematics, like foliations and knot theory, and (in the Jordan algebra case) also to Banach manifolds and infinite di mensional holomorphy. This makes it a relevant field of study for readers with diverse backgrounds and interests. Therefore this book is not intended solely for specialists in operator algebras, but also for graduate students and mathematicians in other fields who want to learn the subject. We assume that the reader starts out with only the basic knowledge taught in standard graduate courses in real and complex variables, measure theory and functional analysis. We have given complete proofs of basic results on operator algebras, so that no previous knowledge in this field is needed. For discussion of some topics, more advanced prerequisites are needed. Here we have included all necessary definitions and statements of results, but in some cases proofs are referred to standard texts. In those cases we have tried to give references to material that can be read and understood easily in the context of our book.
This book analyzes in considerable generality the quantization-dequantization integral transform scheme of Weyl and Wigner, and considers several phase operator theories. It features: a thorough treatment of quantization in polar coordinates; dequantization by a new method of "motes"; a discussion of Moyal algebras; modifications of the transform method to accommodate operator orderings; a rigorous discussion of the Dieke laser model for one mode, fully quantum, in the thermodynamic limit; analysis of quantum phase theories based on the Toeplitz operator, the coherent state operator, the quantized phase space angle, and a sequence of finite rank operators.
Volume two of the two-volume set (see ISBN 0-8218-0819-2) covers the comparison theory of projection, normal states and unitary equivalence of von Newmann algebras, the trade, algebra and commutant, special representation of C*-algebras, tensor products, approximation by matrix algebras, crossed products, and direct integrals and decompositions. Originally published by Academic Press in 1986. Annotation copyrighted by Book News, Inc., Portland, OR
Explores some basic roles of Lie groups in linear analysis, with particular emphasis on the generalizations of the Fourier transform and the study of partial differential equations.
This book presents revised versions of the best papers selected from the symposium “Mathematical Progress in Expressive Image Synthesis” (MEIS2013) held in Fukuoka, Japan, in 2013. The topics cover various areas of computer graphics (CG), such as surface deformation/editing, character animation, visual simulation of fluids, texture and sound synthesis and photorealistic rendering. From a mathematical point of view, the book also presents papers addressing discrete differential geometry, Lie theory, computational fluid dynamics, function interpolation and learning theory. This book showcases the latest joint efforts between mathematicians, CG researchers and practitioners exploring important issues in graphics and visual perception. The book provides a valuable resource for all computer graphics researchers seeking open problem areas, especially those now entering the field who have not yet selected a research direction.