This leading-edge resource offers you a new methodology for analyzing and studying the behavior of wireless communication systems in an interference environment. It provides you with modern tools and techniques for use in real-world applications that help you guarantee optimum system performance. The book treats both additive and multiplicative interfering signals, including in-depth descriptions of how these signals behave, regardless of the source.
Signal Processing for Wireless Communication Systems brings together in one place important contributions and up-to-date research results in this fast moving area. The Contributors to this work were selected from leading researchers and practitioners in this field. The book's 18 chapters are divided into three areas: systems, Networks, and Implementation Issues; Channel Estimation and Equalization; and Multiuser Detection. The Work, originally published as Volume 30, Numbers 1-3 of the Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, will be valuable to anyone working or researching in the field of wireless communication systems. It serves as an excellent reference, providing insight into some of the most challenging issues being examined today.
Adaptive techniques play a key role in modern wireless communication systems. The concept of adaptation is emphasized in the Adaptation in Wireless Communications Series through a unified framework across all layers of the wireless protocol stack ranging from the physical layer to the application layer, and from cellular systems to next-generation wireless networks. This specific volume, Adaptive Signal Processing in Wireless Communications is devoted to adaptation in the physical layer. It gives an in-depth survey of adaptive signal processing techniques used in current and future generations of wireless communication systems. Featuring the work of leading international experts, it covers adaptive channel modeling, identification and equalization, adaptive modulation and coding, adaptive multiple-input-multiple-output (MIMO) systems, and cooperative diversity. It also addresses other important aspects of adaptation in wireless communications such as hardware implementation, reconfigurable processing, and cognitive radio. A second volume in the series, Adaptation and Cross-layer Design in Wireless Networks(cat no.46039) is devoted to adaptation in the data link, network, and application layers.
This book covers the basic aspects of Code Division Multiple Access or CDMA. It begins with an introduction to the basic ideas behind fixed and random access systems in order to demonstrate the difference between CDMA and the more widely understood TDMA, FDMA or CSMA. Secondly, a review of basic spread spectrum techniques are presented which are used in CDMA systems including direct sequence, frequency-hopping and time-hopping approaches. The basic concept of CDMA is presented, followed by the four basic principles of CDMA systems that impact their performance: interference averaging, universal frequency reuse, soft handoff, and statistical multiplexing. The focus of the discussion will then shift to applications. The most common application of CDMA currently is cellular systems. A detailed discussion on cellular voice systems based on CDMA, specifically IS-95, is presented. The capacity of such systems will be examined as well as performance enhancement techniques such as coding and spatial filtering. Also discussed are Third Generation CDMA cellular systems and how they differ from Second Generation systems. A second application of CDMA that is covered is spread spectrum packet radio networks. Finally, there is an examination of multi-user detection and interference cancellation and how such techniques impact CDMA networks. This book should be of interest and value to engineers, advanced students, and researchers in communications.
Fully revised and updated version of the successful "AdvancedWireless Communications" Wireless communications continue to attract the attention ofboth research community and industry. Since the first edition waspublished significant research and industry activities have broughtthe fourth generation (4G) of wireless communications systemscloser to implementation and standardization. "Advanced Wireless Communications" continues to provide acomparative study of enabling technologies for 4G. This secondedition has been revised and updated and now includes additionalinformation on the components of common air interface, includingthe area of space time coding , multicarrier modulation especiallyOFDM, MIMO, cognitive radio and cooperative transmission. Ideal for students and engineers in research and development inthe field of wireless communications, the second edition ofAdvanced Wireless Communications also gives an understanding tocurrent approaches for engineers in telecomm operators, governmentand regulatory institutions. New features include: Brand new chapter covering linear precoding in MIMO channelsbased on convex optimization theory. Material based on game theory modelling encompassing problemsof adjacent cell interference, flexible spectra sharing andcooperation between the nodes in ad hoc networks. Presents and discusses the latest schemes for interferencesuppression in ultra wide band (UWB) cognitive systems. Discusses the cooperative transmission and more details onpositioning.
A Timely Exploration of Multiuser Detection in Wireless Networks During the past decade, the design and development of current and emerging wireless systems have motivated many important advances in multiuser detection. This book fills an important need by providing a comprehensive overview of crucial recent developments that have occurred in this active research area. Each chapter is contributed by noted experts and is meant to serve as a self-contained treatment of the topic. Coverage includes: Linear and decision feedback methods Iterative multiuser detection and decoding Multiuser detection in the presence of channel impairments Performance analysis with random signatures and channels Joint detection methods for MIMO channels Interference avoidance methods at the transmitter Transmitter precoding methods for the MIMO downlink This book is an ideal entry point for exploring ongoing research in multiuser detection and for learning about the field's existing unsolved problems and issues. It is a valuable resource for researchers, engineers, and graduate students who are involved in the area of digital communications.
Intended for a graduate course on wireless communications, this textbook concentrates more on conceptual fundamentals than on rigorous mathematical treatment. The author first describes the radio environment, discussing issues of radio wave propagation theory, signal strength, and radio coverage are
The capacity of wireless data communications is lagging behind demands due to unsatisfactory performance of the existing wireless networks, such as low data rates, low spectral efficiency and low quality of service. Space-time coding is an effective transmit diversity technique to combat fading in wireless communications. Space-time codes are a highly bandwidth-efficient approach to signalling within wireless communication that takes advantage of the spatial dimension by transmitting a number of data streams using multiple co-located antennas. There are various approaches to the coding structures, including space-time trellis coded modulation, space-time turbo codes and also layered architectures. The central issue in all these various coding structures is the exploitation of multipath effects in order to achieve very high spectral efficiencies. The spectral efficiencies of traditional wireless systems range between 1-5bps/sec/Hz but by using space-time techniques spectral efficiencies of 20-40bps/sec/Hz have been possible. Hence, space-time coding enables an increase in capacity by an order of magnitude. This is the main reason why space-time codes have been included in the standards for the third generation wireless communication systems and ultimately why Space-time Coding will be in great demand by individuals within industry and academia. The comprehensive understanding of space-time coding is essential in the implementation of 3G, and as the only title currently available, Space-Time Coding will be the standard text for Researchers, telecommunication engineers and network planners, academics and undergraduate/postgraduate students, telecommunications managers and consultants.