White Noise Distribution Theory

White Noise Distribution Theory

Author: Hui-Hsiung Kuo

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 400

ISBN-13: 135140430X

DOWNLOAD EBOOK

Learn the basics of white noise theory with White Noise Distribution Theory. This book covers the mathematical foundation and key applications of white noise theory without requiring advanced knowledge in this area. This instructive text specifically focuses on relevant application topics such as integral kernel operators, Fourier transforms, Laplacian operators, white noise integration, Feynman integrals, and positive generalized functions. Extremely well-written by one of the field's leading researchers, White Noise Distribution Theory is destined to become the definitive introductory resource on this challenging topic.


Introduction to Hida Distributions

Introduction to Hida Distributions

Author: Si Si

Publisher: World Scientific

Published: 2012

Total Pages: 268

ISBN-13: 9812836888

DOWNLOAD EBOOK

This book provides the mathematical definition of white noise and gives its significance. White noise is in fact a typical class of idealized elemental (infinitesimal) random variables. Thus, we are naturally led to have functionals of such elemental random variables that is white noise. This book analyzes those functionals of white noise, particularly the generalized ones called Hida distributions, and highlights some interesting future directions. The main part of the book involves infinite dimensional differential and integral calculus based on the variable which is white noise.The present book can be used as a supplementary book to Lectures on White Noise Functionals published in 2008, with detailed background provided.


Stochastic Analysis: Classical And Quantum: Perspectives Of White Noise Theory

Stochastic Analysis: Classical And Quantum: Perspectives Of White Noise Theory

Author: Takeyuki Hida

Publisher: World Scientific

Published: 2005-10-06

Total Pages: 311

ISBN-13: 9814479179

DOWNLOAD EBOOK

This volume includes papers by leading mathematicians in the fields of stochastic analysis, white noise theory and quantum information, together with their applications. The papers selected were presented at the International Conference on Stochastic Analysis: Classical and Quantum held at Meijo University, Nagoya, Japan from 1 to 5 November 2004. The large range of subjects covers the latest research in probability theory.


Numerical Methods for Stochastic Partial Differential Equations with White Noise

Numerical Methods for Stochastic Partial Differential Equations with White Noise

Author: Zhongqiang Zhang

Publisher: Springer

Published: 2017-09-01

Total Pages: 391

ISBN-13: 3319575112

DOWNLOAD EBOOK

This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.


Proceedings of the International Conference on Stochastic Analysis and Applications

Proceedings of the International Conference on Stochastic Analysis and Applications

Author: Sergio Albeverio

Publisher: Springer Science & Business Media

Published: 2013-03-20

Total Pages: 347

ISBN-13: 1402024681

DOWNLOAD EBOOK

Stochastic analysis is a field of mathematical research having numerous interactions with other domains of mathematics such as partial differential equations, riemannian path spaces, dynamical systems, optimization. It also has many links with applications in engineering, finance, quantum physics, and other fields. This book covers recent and diverse aspects of stochastic and infinite-dimensional analysis. The included papers are written from a variety of standpoints (white noise analysis, Malliavin calculus, quantum stochastic calculus) by the contributors, and provide a broad coverage of the subject. This volume will be useful to graduate students and research mathematicians wishing to get acquainted with recent developments in the field of stochastic analysis.


Recent Development in Stochastic Dynamics and Stochastic Analysis

Recent Development in Stochastic Dynamics and Stochastic Analysis

Author: Jinqiao Duan

Publisher: World Scientific

Published: 2010

Total Pages: 306

ISBN-13: 9814277266

DOWNLOAD EBOOK

1. Hyperbolic equations with random boundary conditions / Zdzisław Brzeźniak and Szymon Peszat -- 2. Decoherent information of quantum operations / Xuelian Cao, Nan Li and Shunlong Luo -- 3. Stabilization of evolution equations by noise / Tomás Caraballo and Peter E. Kloeden -- 4. Stochastic quantification of missing mechanisms in dynamical systems / Baohua Chen and Jinqiao Duan -- 5. Banach space-valued functionals of white noise / Yin Chen and Caishi Wang -- 6. Hurst index estimation for self-similar processes with long-memory / Alexandra Chronopoulou and Frederi G. Viens -- 7. Modeling colored noise by fractional Brownian motion / Jinqiao Duan, Chujin Li and Xiangjun Wang -- 8. A sufficient condition for non-explosion for a class of stochastic partial differential equations / Hongbo Fu, Daomin Cao and Jinqiao Duan -- 9. The influence of transaction costs on optimal control for an insurance company with a new value function / Lin He, Zongxia Liang and Fei Xing -- 10. Limit theorems for p-variations of solutions of SDEs driven by additive stable Lévy noise and model selection for paleo-climatic data / Claudia Hein, Peter Imkeller and Ilya Pavlyukevich -- 11. Class II semi-subgroups of the infinite dimensional rotation group and associated Lie algebra / Takeyuki Hida and Si Si -- 12. Stopping Weyl processes / Robin L. Hudson -- 13. Karhunen-Loéve expansion for stochastic convolution of cylindrical fractional Brownian motions / Zongxia Liang -- 14. Stein's method meets Malliavin calculus : a short survey with new estimates / Ivan Nourdin and Giovanni Peccati -- 15. On stochastic integrals with respect to an infinite number of Poisson point process and its applications / Guanglin Rang, Qing Li and Sheng You -- 16. Lévy white noise, elliptic SPDEs and Euclidean random fields / Jiang-Lun Wu -- 17. A short presentation of Choquet integral / Jia-An Yan


Stochastic Partial Differential Equations: An Introduction

Stochastic Partial Differential Equations: An Introduction

Author: Wei Liu

Publisher: Springer

Published: 2015-10-06

Total Pages: 267

ISBN-13: 3319223542

DOWNLOAD EBOOK

This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. The theory of SPDEs is based both on the theory of deterministic partial differential equations, as well as on modern stochastic analysis. Whilst this volume mainly follows the ‘variational approach’, it also contains a short account on the ‘semigroup (or mild solution) approach’. In particular, the volume contains a complete presentation of the main existence and uniqueness results in the case of locally monotone coefficients. Various types of generalized coercivity conditions are shown to guarantee non-explosion, but also a systematic approach to treat SPDEs with explosion in finite time is developed. It is, so far, the only book where the latter and the ‘locally monotone case’ is presented in a detailed and complete way for SPDEs. The extension to this more general framework for SPDEs, for example, in comparison to the well-known case of globally monotone coefficients, substantially widens the applicability of the results.


Stochastic Processes, Finance and Control

Stochastic Processes, Finance and Control

Author: Robert J. Elliot

Publisher: World Scientific

Published: 2012

Total Pages: 605

ISBN-13: 9814383309

DOWNLOAD EBOOK

This Festschrift is dedicated to Robert J Elliott on the occasion of his 70th birthday It brings together a collection of chapters by distinguished and eminent scholars in the fields of stochastic processes, filtering and control, as well as their applications to mathematical finance It presents cutting edge developments in these fields and is a valuable source of references for researchers, graduate students and market practitioners in mathematical finance and financial engineering Topics include the theory of stochastic processes, differential and stochastic games, mathematical finance, filtering and control.


Handbook of Stochastic Analysis and Applications

Handbook of Stochastic Analysis and Applications

Author: D. Kannan

Publisher: CRC Press

Published: 2001-10-23

Total Pages: 800

ISBN-13: 9780824706609

DOWNLOAD EBOOK

An introduction to general theories of stochastic processes and modern martingale theory. The volume focuses on consistency, stability and contractivity under geometric invariance in numerical analysis, and discusses problems related to implementation, simulation, variable step size algorithms, and random number generation.


Applied Stochastic Differential Equations

Applied Stochastic Differential Equations

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 327

ISBN-13: 1316510085

DOWNLOAD EBOOK

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.