In this book, Lawrence Sklar demonstrates the interdependence of science and philosophy by examining a number of crucial problems on the nature of space and time—problems that require for their resolution the resources of philosophy and of physics. The overall issues explored are our knowledge of the geometry of the world, the existence of spacetime as an entity over and above the material objects of the world, the relation between temporal order and causal order, and the problem of the direction of time. Without neglecting the most subtle philosophical points or the most advanced contributions of contemporary physics, the author has taken pains to make his explorations intelligible to the reader with no advanced training in physics, mathematics, or philosophy. The arguments are set forth step-by-step, beginning from first principles; and the philosophical discussions are supplemented in detail by nontechnical expositions of crucial features of physical theories.
Philosophical foundations of the physics of space-time This concise book introduces nonphysicists to the core philosophical issues surrounding the nature and structure of space and time, and is also an ideal resource for physicists interested in the conceptual foundations of space-time theory. Tim Maudlin's broad historical overview examines Aristotelian and Newtonian accounts of space and time, and traces how Galileo's conceptions of relativity and space-time led to Einstein's special and general theories of relativity. Maudlin explains special relativity with enough detail to solve concrete physical problems while presenting general relativity in more qualitative terms. Additional topics include the Twins Paradox, the physical aspects of the Lorentz-FitzGerald contraction, the constancy of the speed of light, time travel, the direction of time, and more. Introduces nonphysicists to the philosophical foundations of space-time theory Provides a broad historical overview, from Aristotle to Einstein Explains special relativity geometrically, emphasizing the intrinsic structure of space-time Covers the Twins Paradox, Galilean relativity, time travel, and more Requires only basic algebra and no formal knowledge of physics
Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.
Dedicated to the centennial anniversary of Minkowski's discovery of spacetime, this volume contains papers, most presented at the Third International Conference on the Nature and Ontology of Spacetime, that address some of the deepest questions in physics.
Frank Arntzenius presents a series of radical ideas about the structure of space and time, and establishes a new metaphysical position which holds that the fundamental structure of the physical world is purely geometrical structure. He argues that we should broaden our conceptual horizons and accept that spaces other than spacetime may exist.
This excellent textbook offers a unique take on relativity theory, setting it in its historical context. Ideal for those interested in relativity and the history of physics, the book contains a complete account of special relativity that begins with the historical analysis of the reasons that led to a change in our view of space and time. Its aim is to foster a deep understanding of relativistic spacetime and its consequences for Dynamics.
This sentence is false. Is this sentence true? If it is true that the sentence is false then the sentence is true. If it is false that the sentence is false then the sentence is true. This is a logical contradiction. The sentence can not be both true & false simultaneously. The sentence must be true or false. This begins our journey into the nature of the paradox. A paradox is an absurd truth that derives a repugnant conclusion from an unquestionable set of premises. The listener will usually agree with the arguments supporting the conclusion but be unwilling to accept the final inference. To resolve a paradox, we must do one of four things: ignore it, distort it, reject it, or accept it. This thought provoking book, Space, Time, & Reality, seeks to probe the depths of the human mind by leveraging the power of the paradox. This is a book of questions...not answers, & is intended for those who accept or reject & not ignore or distort.