Step-by-Step writing process instruction and the detailed concept modeling of Prentice Hall Writing and Grammar helps students improve their writing skills.
Numerical Methods is a mathematical tool used by engineers and mathematicians to do scientific calculations. It is used to find solutions to applied problems where ordinary analytical methods fail. This book is intended to serve for the needs of co
In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.
This survey covers a wide range of topics fundamental to calculating integrals on computer systems and discusses both the theoretical and computational aspects of numerical and symbolic methods. It includes extensive sections on one- and multidimensional integration formulas, like polynomial, number-theoretic, and pseudorandom formulas, and deals with issues concerning the construction of numerical integration algorithms.
The finite element method has always been a mainstay for solving engineering problems numerically. The most recent developments in the field clearly indicate that its future lies in higher-order methods, particularly in higher-order hp-adaptive schemes. These techniques respond well to the increasing complexity of engineering simulations and
Proceedings of a May 1999 forum on current issues in digital library research and technology. Papers are divided in sections on ontology and structure, database querying and mining, video, mathematics and musical applications, text and information retrieval, and metadata. Discussion encompasses area
This book is the modern first treatment of experimental designs, providing a comprehensive introduction to the interrelationship between the theory of optimal designs and the theory of cubature formulas in numerical analysis. It also offers original new ideas for constructing optimal designs. The book opens with some basics on reproducing kernels, and builds up to more advanced topics, including bounds for the number of cubature formula points, equivalence theorems for statistical optimalities, and the Sobolev Theorem for the cubature formula. It concludes with a functional analytic generalization of the above classical results. Although it is intended for readers who are interested in recent advances in the construction theory of optimal experimental designs, the book is also useful for researchers seeking rich interactions between optimal experimental designs and various mathematical subjects such as spherical designs in combinatorics and cubature formulas in numerical analysis, both closely related to embeddings of classical finite-dimensional Banach spaces in functional analysis and Hilbert identities in elementary number theory. Moreover, it provides a novel communication platform for “design theorists” in a wide variety of research fields.
Gaussian quadrature is a powerful technique for numerical integration that falls under the broad category of spectral methods. The purpose of this work is to provide an introduction to the theory and practice of Gaussian quadrature. We study the approximation theory of trigonometric and orthogonal polynomials and related functions and examine the analytical framework of Gaussian quadrature. We discuss Gaussian quadrature for bandlimited functions, a topic inspired by some recent developments in the analysis of prolate spheroidal wave functions. Algorithms for the computation of the quadrature nodes and weights are described. Several applications of Gaussian quadrature are given, ranging from the evaluation of special functions to pseudospectral methods for solving differential equations. Software realization of select algorithms is provided. Table of Contents: Introduction / Approximating with Polynomials and Related Functions / Gaussian Quadrature / Applications / Links to Mathematical Software