Introduction to Probability

Introduction to Probability

Author: David F. Anderson

Publisher: Cambridge University Press

Published: 2017-11-02

Total Pages: 447

ISBN-13: 110824498X

DOWNLOAD EBOOK

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.


Introduction to Probability, Statistics, and Random Processes

Introduction to Probability, Statistics, and Random Processes

Author: Hossein Pishro-Nik

Publisher:

Published: 2014-08-15

Total Pages: 746

ISBN-13: 9780990637202

DOWNLOAD EBOOK

The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.


Foundations of Probability

Foundations of Probability

Author: Alfred Renyi

Publisher: Courier Corporation

Published: 2007-01-01

Total Pages: 386

ISBN-13: 0486462617

DOWNLOAD EBOOK

Introducing many innovations in content and methods, this book involves the foundations, basic concepts, and fundamental results of probability theory. Geared toward readers seeking a firm basis for study of mathematical statistics or information theory, it also covers the mathematical notions of experiments and independence. 1970 edition.


Introduction to Probability

Introduction to Probability

Author: John E. Freund

Publisher: Courier Corporation

Published: 2012-05-11

Total Pages: 276

ISBN-13: 0486158438

DOWNLOAD EBOOK

Featured topics include permutations and factorials, probabilities and odds, frequency interpretation, mathematical expectation, decision making, postulates of probability, rule of elimination, much more. Exercises with some solutions. Summary. 1973 edition.


An Elementary Introduction to the Theory of Probability

An Elementary Introduction to the Theory of Probability

Author: Boris Vladimirovich Gnedenko

Publisher: Courier Corporation

Published: 1962-01-01

Total Pages: 162

ISBN-13: 0486601552

DOWNLOAD EBOOK

This compact volume equips the reader with all the facts and principles essential to a fundamental understanding of the theory of probability. It is an introduction, no more: throughout the book the authors discuss the theory of probability for situations having only a finite number of possibilities, and the mathematics employed is held to the elementary level. But within its purposely restricted range it is extremely thorough, well organized, and absolutely authoritative. It is the only English translation of the latest revised Russian edition; and it is the only current translation on the market that has been checked and approved by Gnedenko himself. After explaining in simple terms the meaning of the concept of probability and the means by which an event is declared to be in practice, impossible, the authors take up the processes involved in the calculation of probabilities. They survey the rules for addition and multiplication of probabilities, the concept of conditional probability, the formula for total probability, Bayes's formula, Bernoulli's scheme and theorem, the concepts of random variables, insufficiency of the mean value for the characterization of a random variable, methods of measuring the variance of a random variable, theorems on the standard deviation, the Chebyshev inequality, normal laws of distribution, distribution curves, properties of normal distribution curves, and related topics. The book is unique in that, while there are several high school and college textbooks available on this subject, there is no other popular treatment for the layman that contains quite the same material presented with the same degree of clarity and authenticity. Anyone who desires a fundamental grasp of this increasingly important subject cannot do better than to start with this book. New preface for Dover edition by B. V. Gnedenko.


The Probability Tutoring Book

The Probability Tutoring Book

Author: Carol Ash

Publisher: Wiley-IEEE Press

Published: 1996-11-14

Total Pages: 0

ISBN-13: 9780780310513

DOWNLOAD EBOOK

A self-study guide for practicing engineers, scientists, and students, this book offers practical, worked-out examples on continuous and discrete probability for problem-solving courses. It is filled with handy diagrams, examples, and solutions that greatly aid in the comprehension of a variety of probability problems.


Probability and Statistics

Probability and Statistics

Author: Michael J. Evans

Publisher: Macmillan

Published: 2004

Total Pages: 704

ISBN-13: 9780716747420

DOWNLOAD EBOOK

Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.


Probability Theory

Probability Theory

Author: Alfred Renyi

Publisher: Courier Corporation

Published: 2007-05-11

Total Pages: 674

ISBN-13: 0486458679

DOWNLOAD EBOOK

The founder of Hungary's Probability Theory School, A. Rényi made significant contributions to virtually every area of mathematics. This introductory text is the product of his extensive teaching experience and is geared toward readers who wish to learn the basics of probability theory, as well as those who wish to attain a thorough knowledge in the field. Based on the author's lectures at the University of Budapest, this text requires no preliminary knowledge of probability theory. Readers should, however, be familiar with other branches of mathematics, including a thorough understanding of the elements of the differential and integral calculus and the theory of real and complex functions. These well-chosen problems and exercises illustrate the algebras of events, discrete random variables, characteristic functions, and limit theorems. The text concludes with an extensive appendix that introduces information theory.