In this paper one generalizes the intuitionistic fuzzy set (IFS), paraconsistent set, and intuitionistic set to the neutrosophic set (NS). Many examples are presented. Distinctions between NS and IFS are underlined.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
In this paper we study and develop the Neutrosophic Triplet Topology (NTT) that was recently introduced by Sahin et al. Like classical topology, the NTT tells how the elements of a set relate spatially to each other in a more comprehensive way using the idea of Neutrosophic Triplet Sets.
This book presents the advancements and applications of neutrosophics, which are generalizations of fuzzy logic, fuzzy set, and imprecise probability. The neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics are increasingly used in engineering applications (especially for software and information fusion), medicine, military, cybernetics, physics.In the last chapter a soft semantic Web Services agent framework is proposed to facilitate the registration and discovery of high quality semantic Web Services agent. The intelligent inference engine module of soft semantic Web Services agent is implemented using interval neutrosophic logic.
In this paper, the concept of neutrosophic topological spaces is introduced. We define and study the properties of neutrosophic open sets, closed sets, interior and closure. The set of all generalize neutrosophic pre-closed sets GNPC and the set of all neutrosophic open sets in a neutrosophic topological space can be considered as examples of generalized neutrosophic topological spaces.
The purpose of this paper is to define the product related neutrosophic topological space and proved some theorems based on this. We introduce the concept of neutrosophic semiopen sets and neutrosophic semi-closed sets in neutrosophic topological spaces and derive some of their characterization. Finally, we analyze neutrosophic semi-interior and neutrosophic semi-closure operators also.
In Geographical information systems (GIS) there is a need to model spatial regions with indeterminate boundary and under indeterminacy. The purpose of this chapter is to construct the basic concepts of the so-called "neutrosophic sets via neutrosophic topological spaces (NTs)".
Neutrosophic theory and applications have been expanding in all directions at an astonishing rate especially after the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structure such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been a very important tool in all various areas of data mining, decision making, e-learning, engineering, medicine, social science, and some more. The book “New Trends in Neutrosophic Theories and Applications” focuses on theories, methods, algorithms for decision making and also applications involving neutrosophic information. Some topics deal with data mining, decision making, e-learning, graph theory, medical diagnosis, probability theory, topology, and some more. 30 papers by 39 authors and coauthors.