Approximation Theory Using Positive Linear Operators

Approximation Theory Using Positive Linear Operators

Author: Radu Paltanea

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 208

ISBN-13: 1461220580

DOWNLOAD EBOOK

Offers an examination of the multivariate approximation case Special focus on the Bernstein operators, including applications, and on two new classes of Bernstein-type operators Many general estimates, leaving room for future applications (e.g. the B-spline case) Extensions to approximation operators acting on spaces of vector functions Historical perspective in the form of previous significant results


Convergence Estimates in Approximation Theory

Convergence Estimates in Approximation Theory

Author: Vijay Gupta

Publisher: Springer Science & Business Media

Published: 2014-01-08

Total Pages: 368

ISBN-13: 3319027654

DOWNLOAD EBOOK

The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This book focuses on the convergence of linear positive operators in real and complex domains. The theoretical aspects of these operators have been an active area of research over the past few decades. In this volume, authors Gupta and Agarwal explore new and more efficient methods of applying this research to studies in Optimization and Analysis. The text will be of interest to upper-level students seeking an introduction to the field and to researchers developing innovative approaches.


Recent Advances in Constructive Approximation Theory

Recent Advances in Constructive Approximation Theory

Author: Vijay Gupta

Publisher: Springer

Published: 2018-07-06

Total Pages: 295

ISBN-13: 3319921657

DOWNLOAD EBOOK

This book presents an in-depth study on advances in constructive approximation theory with recent problems on linear positive operators. State-of-the-art research in constructive approximation is treated with extensions to approximation results on linear positive operators in a post quantum and bivariate setting. Methods, techniques, and problems in approximation theory are demonstrated with applications to optimization, physics, and biology. Graduate students, research scientists and engineers working in mathematics, physics, and industry will broaden their understanding of operators essential to pure and applied mathematics. Topics discussed include: discrete operators, quantitative estimates, post-quantum calculus, integral operators, univariate Gruss-type inequalities for positive linear operators, bivariate operators of discrete and integral type, convergence of GBS operators.


Selected Topics in Complex Analysis

Selected Topics in Complex Analysis

Author: Vladimir Ya. Eiderman

Publisher: Springer Science & Business Media

Published: 2005-04-20

Total Pages: 240

ISBN-13: 9783764372514

DOWNLOAD EBOOK

This volume opens with a paper by V.P. Havin that presents a comprehensive survey of the work of mathematician S.Ya. Khavinson. It includes a complete bibliography, previously unpublished, of 163 items, and twelve peer-reviewed research and expository papers by leading mathematicians, including the joint paper by Khavinson and T.S. Kuzina. The emphasis is on the usage of tools from functional analysis, potential theory, algebra, and topology.


Applications of q-Calculus in Operator Theory

Applications of q-Calculus in Operator Theory

Author: Ali Aral

Publisher: Springer Science & Business Media

Published: 2013-05-09

Total Pages: 275

ISBN-13: 1461469465

DOWNLOAD EBOOK

The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas such as computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics. ​​This monograph is an introduction to combining approximation theory and q-Calculus with applications, by using well- known operators. The presentation is systematic and the authors include a brief summary of the notations and basic definitions of q-calculus before delving into more advanced material. The many applications of q-calculus in the theory of approximation, especially on various operators, which includes convergence of operators to functions in real and complex domain​ forms the gist of the book. This book is suitable for researchers and students in mathematics, physics and engineering, and for professionals who would enjoy exploring the host of mathematical techniques and ideas that are collected and discussed in the book.


Computation and Approximation

Computation and Approximation

Author: Vijay Gupta

Publisher: Springer Nature

Published: 2021-11-29

Total Pages: 107

ISBN-13: 3030855635

DOWNLOAD EBOOK

This brief studies recent work conducted on certain exponential type operators and other integral type operators. It consists of three chapters: the first on exponential type operators, the second a study of some modifications of linear positive operators, and the third on difference estimates between two operators. It will be of interest to students both graduate and undergraduate studying linear positive operators and the area of approximation theory.


Markov Operators, Positive Semigroups and Approximation Processes

Markov Operators, Positive Semigroups and Approximation Processes

Author: Francesco Altomare

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-12-17

Total Pages: 326

ISBN-13: 3110366975

DOWNLOAD EBOOK

This research monograph gives a detailed account of a theory which is mainly concerned with certain classes of degenerate differential operators, Markov semigroups and approximation processes. These mathematical objects are generated by arbitrary Markov operators acting on spaces of continuous functions defined on compact convex sets; the study of the interrelations between them constitutes one of the distinguishing features of the book. Among other things, this theory provides useful tools for studying large classes of initial-boundary value evolution problems, the main aim being to obtain a constructive approximation to the associated positive C0-semigroups by means of iterates of suitable positive approximating operators. As a consequence, a qualitative analysis of the solutions to the evolution problems can be efficiently developed. The book is mainly addressed to research mathematicians interested in modern approximation theory by positive linear operators and/or in the theory of positive C0-semigroups of operators and evolution equations. It could also serve as a textbook for a graduate level course.


Moments of Linear Positive Operators and Approximation

Moments of Linear Positive Operators and Approximation

Author: Vijay Gupta

Publisher: Springer

Published: 2019-05-25

Total Pages: 102

ISBN-13: 3030194558

DOWNLOAD EBOOK

This book is a valuable resource for Graduate students and researchers interested in current techniques and methods within the theory of moments in linear positive operators and approximation theory. Moments are essential to the convergence of a sequence of linear positive operators. Several methods are examined to determine moments including direct calculations, recurrence relations, and the application of hypergeometric series. A collection of operators in the theory of approximation are investigated through their moments and a variety of results are surveyed with fundamental theories and recent developments. Detailed examples are included to assist readers understand vital theories and potential applications.


Korovkin-type Approximation Theory and Its Applications

Korovkin-type Approximation Theory and Its Applications

Author: Francesco Altomare

Publisher: Walter de Gruyter

Published: 2011-07-21

Total Pages: 641

ISBN-13: 3110884585

DOWNLOAD EBOOK

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.