This book constitutes the refereed proceedings of the 21st International Workshop on Computer Science Logic, CSL 2007, held as the 16th Annual Conference of the EACSL in Lausanne, Switzerland. The 36 revised full papers presented together with the abstracts of six invited lectures are organized in topical sections on logic and games, expressiveness, games and trees, logic and deduction, lambda calculus, finite model theory, linear logic, proof theory, and game semantics.
The initial sections of this text deal with syntactical matters such as logical formalism, cut-elimination, and the embedding of intuitionistic logic in classical linear logic. Concluding chapters focus on proofnets for the multiplicative fragment and the algorithmic interpretation of cut-elimination in proofnets.
This book constitutes the refereed proceedings of the 14th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR 2007, held in Yerevan, Armenia. It contains 36 revised full papers, 15 short papers and three invited talks that were carefully selected from 78 submissions. The papers address all current issues in logic programming, logic-based program manipulation, formal method, automated reasoning, and various kinds of AI logics.
The lambda calculus was developed in the 1930s by Alonzo Church. The calculus turned out to be an interesting model of computation and became theprototype for untyped functional programming languages. Operational and denotational semantics for the calculus served as examples for otherprogramming languages. In typed lambda calculi, lambda terms are classified according to their applicative behavior. In the 1960s it was discovered that the types of typed lambda calculi are in fact appearances of logical propositions. Thus there are two possible views of typed lambda calculi: - as models of computation, where terms are viewed as programs in a typed programming language; - as logical theories, where the types are viewed as propositions and the terms as proofs. The practical spin-off from these studies are: - functional programming languages which are mathematically more succinct than imperative programs; - systems for automated proof checking based on lambda caluli. This volume is the proceedings of TLCA '93, the first international conference on Typed Lambda Calculi and Applications,organized by the Department of Philosophy of Utrecht University. It includes29 papers selected from 51 submissions.
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included.
This is a monograph about logic. Specifically, it presents the mathe matical theory of the logic of bunched implications, BI: I consider Bl's proof theory, model theory and computation theory. However, the mono graph is also about informatics in a sense which I explain. Specifically, it is about mathematical models of resources and logics for reasoning about resources. I begin with an introduction which presents my (background) view of logic from the point of view of informatics, paying particular attention to three logical topics which have arisen from the development of logic within informatics: • Resources as a basis for semantics; • Proof-search as a basis for reasoning; and • The theory of representation of object-logics in a meta-logic. The ensuing development represents a logical theory which draws upon the mathematical, philosophical and computational aspects of logic. Part I presents the logical theory of propositional BI, together with a computational interpretation. Part II presents a corresponding devel opment for predicate BI. In both parts, I develop proof-, model- and type-theoretic analyses. I also provide semantically-motivated compu tational perspectives, so beginning a mathematical theory of resources. I have not included any analysis, beyond conjecture, of properties such as decidability, finite models, games or complexity. I prefer to leave these matters to other occasions, perhaps in broader contexts.