On Exciton-Vibration and Exciton-Photon Interactions in Organic Semiconductors

On Exciton-Vibration and Exciton-Photon Interactions in Organic Semiconductors

Author: Antonios M. Alvertis

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9783030854553

DOWNLOAD EBOOK

What are the physical mechanisms that underlie the efficient generation and transfer of energy at the nanoscale? Nature seems to know the answer to this question, having optimised the process of photosynthesis in plants over millions of years of evolution. It is conceivable that humans could mimic this process using synthetic materials, and organic semiconductors have attracted a lot of attention in this respect. Once an organic semiconductor absorbs light, bound pairs of electrons with positively charged holes, termed `excitons', are formed. Excitons behave as fundamental energy carriers, hence understanding the physics behind their efficient generation and transfer is critical to realising the potential of organic semiconductors for light-harvesting and other applications, such as LEDs and transistors. However, this problem is extremely challenging since excitons can interact very strongly with photons. Moreover, simultaneously with the exciton motion, organic molecules can vibrate in hundreds of possible ways, having a very strong effect on energy transfer. The description of these complex phenomena is often beyond the reach of standard quantum mechanical methods which rely on the assumption of weak interactions between excitons, photons and vibrations. In this thesis, Antonios Alvertis addresses this problem through the development and application of a variety of different theoretical methods to the description of these strong interactions, providing pedagogical explanations of the underlying physics. A comprehensive introduction to organic semiconductors is followed by a review of the background theory that is employed to approach the relevant research questions, and the theoretical results are presented in close connection with experiment, yielding valuable insights for experimentalists and theoreticians alike. .


On Exciton–Vibration and Exciton–Photon Interactions in Organic Semiconductors

On Exciton–Vibration and Exciton–Photon Interactions in Organic Semiconductors

Author: Antonios M. Alvertis

Publisher: Springer Nature

Published: 2021-10-25

Total Pages: 213

ISBN-13: 303085454X

DOWNLOAD EBOOK

What are the physical mechanisms that underlie the efficient generation and transfer of energy at the nanoscale? Nature seems to know the answer to this question, having optimised the process of photosynthesis in plants over millions of years of evolution. It is conceivable that humans could mimic this process using synthetic materials, and organic semiconductors have attracted a lot of attention in this respect. Once an organic semiconductor absorbs light, bound pairs of electrons with positively charged holes, termed `excitons’, are formed. Excitons behave as fundamental energy carriers, hence understanding the physics behind their efficient generation and transfer is critical to realising the potential of organic semiconductors for light-harvesting and other applications, such as LEDs and transistors. However, this problem is extremely challenging since excitons can interact very strongly with photons. Moreover, simultaneously with the exciton motion, organic molecules can vibrate in hundreds of possible ways, having a very strong effect on energy transfer. The description of these complex phenomena is often beyond the reach of standard quantum mechanical methods which rely on the assumption of weak interactions between excitons, photons and vibrations. In this thesis, Antonios Alvertis addresses this problem through the development and application of a variety of different theoretical methods to the description of these strong interactions, providing pedagogical explanations of the underlying physics. A comprehensive introduction to organic semiconductors is followed by a review of the background theory that is employed to approach the relevant research questions, and the theoretical results are presented in close connection with experiment, yielding valuable insights for experimentalists and theoreticians alike.


Photochemistry: Volume 50

Photochemistry: Volume 50

Author: Stefano Protti

Publisher: Royal Society of Chemistry

Published: 2022-12-09

Total Pages: 553

ISBN-13: 1839165677

DOWNLOAD EBOOK

Providing critical analysis of the topics, this book is essential reading for anyone wanting to keep up to date with the literature on photochemistry and its applications.


Optical Properties of Materials and Their Applications

Optical Properties of Materials and Their Applications

Author: Jai Singh

Publisher: John Wiley & Sons

Published: 2020-01-07

Total Pages: 667

ISBN-13: 111950631X

DOWNLOAD EBOOK

Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories Optical Properties of Materials and Their Applications, 2nd Edition is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.


Excitonic and Photonic Processes in Materials

Excitonic and Photonic Processes in Materials

Author: Jai Singh

Publisher: Springer

Published: 2014-07-29

Total Pages: 369

ISBN-13: 9812871314

DOWNLOAD EBOOK

This book is expected to present state-of-the-art understanding of a selection of excitonic and photonic processes in useful materials from semiconductors to insulators to metal/insulator nanocomposites, both inorganic and organic. Among the featured applications are components of solar cells, detectors, light-emitting devices, scintillators and materials with novel optical properties. Excitonic properties are particularly important in organic photovoltaics and light emitting devices, as also in questions of the ultimate resolution and efficiency of new-generation scintillators for medical diagnostics, border security and nuclear non proliferation. Novel photonic and optoelectronic applications benefit from new material combinations and structures to be discussed.


Advances in Multiphoton Processes and Spectroscopy

Advances in Multiphoton Processes and Spectroscopy

Author: S. H. Lin

Publisher: World Scientific

Published: 1993

Total Pages: 406

ISBN-13: 9810215436

DOWNLOAD EBOOK

In view of the rapid growth in both experimental and theoretical studies of multiphoton process and multiphoton spectroscopy of atoms, ions and molecules in chemistry, physics, biology, materials science, etc., it is desirable to publish an advanced series that contains review papers readable not only by active researchers in these areas, but also by those who are not experts in the field but who intend to enter the field. The present series attempts to serve this purpose. Each review article is written in a self-contained manner by the experts in the area so that the readers can grasp the knowledge in the area without too much preparation.


Frontiers in Optics and Photonics

Frontiers in Optics and Photonics

Author: Federico Capasso

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-06-08

Total Pages: 783

ISBN-13: 3110710684

DOWNLOAD EBOOK

This book provides a cutting-edge research overview on the latest developments in the field of Optics and Photonics. All chapters are authored by the pioneers in their field and will cover the developments in Quantum Photonics, Optical properties of 2D Materials, Optical Sensors, Organic Opto-electronics, Nanophotonics, Metamaterials, Plasmonics, Quantum Cascade lasers, LEDs, Biophotonics and biomedical photonics and spectroscopy.


Photorefractive Organic Materials and Applications

Photorefractive Organic Materials and Applications

Author: Pierre-Alexandre Blanche

Publisher: Springer

Published: 2016-06-10

Total Pages: 325

ISBN-13: 3319293346

DOWNLOAD EBOOK

This book provides comprehensive, state-of-the art coverage of photorefractive organic compounds, a class of material with the ability to change their index of refraction upon illumination. The change is both dynamic and reversible. Dynamic because no external processing is required for the index modulation to be revealed, and reversible because the index change can be modified or suppressed by altering the illumination pattern. These properties make photorefractive materials very attractive candidates for many applications such as image restoration, correlation, beam conjugation, non-destructive testing, data storage, imaging through scattering media, holographic imaging and display. The field of photorefractive organic material is also closely related to organic photovoltaic and light emitting diode (OLED), which makes new discoveries in one field applicable to others.