Gaussian Markov Random Fields

Gaussian Markov Random Fields

Author: Havard Rue

Publisher: CRC Press

Published: 2005-02-18

Total Pages: 280

ISBN-13: 0203492021

DOWNLOAD EBOOK

Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie


Parameter Learning for Markov Random Fields with Highest Confidence First Estimation

Parameter Learning for Markov Random Fields with Highest Confidence First Estimation

Author: M. J. Swain

Publisher:

Published: 1990

Total Pages: 34

ISBN-13:

DOWNLOAD EBOOK

Abstract: "We study the problem of learning parameters of a Markov Random Field (MRF) from observations and propose two new approaches suitable for use with Highest Confidence First (HCF) estimation. Both approaches involve estimating local joint probabilities from experience. In one approach the joint probabilities are converted to clique parameters of the Gibbs distribution so that the traditional HCF algorithm can be used. In the other approach the HCF algorithm is modified to run directly with the local probabilities of the MRF instead of the Gibbs distribution."


Stochastic Image Processing

Stochastic Image Processing

Author: Chee Sun Won

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 176

ISBN-13: 1441988572

DOWNLOAD EBOOK

Stochastic Image Processing provides the first thorough treatment of Markov and hidden Markov random fields and their application to image processing. Although promoted as a promising approach for over thirty years, it has only been in the past few years that the theory and algorithms have developed to the point of providing useful solutions to old and new problems in image processing. Markov random fields are a multidimensional extension of Markov chains, but the generalization is complicated by the lack of a natural ordering of pixels in multidimensional spaces. Hidden Markov fields are a natural generalization of the hidden Markov models that have proved essential to the development of modern speech recognition, but again the multidimensional nature of the signals makes them inherently more complicated to handle. This added complexity contributed to the long time required for the development of successful methods and applications. This book collects together a variety of successful approaches to a complete and useful characterization of multidimensional Markov and hidden Markov models along with applications to image analysis. The book provides a survey and comparative development of an exciting and rapidly evolving field of multidimensional Markov and hidden Markov random fields with extensive references to the literature.


Markov Random Field Modeling in Image Analysis

Markov Random Field Modeling in Image Analysis

Author: Stan Z. Li

Publisher: Springer Science & Business Media

Published: 2009-04-03

Total Pages: 372

ISBN-13: 1848002793

DOWNLOAD EBOOK

Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.


Markov Random Fields

Markov Random Fields

Author: Y.A. Rozanov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 207

ISBN-13: 1461381908

DOWNLOAD EBOOK

In this book we study Markov random functions of several variables. What is traditionally meant by the Markov property for a random process (a random function of one time variable) is connected to the concept of the phase state of the process and refers to the independence of the behavior of the process in the future from its behavior in the past, given knowledge of its state at the present moment. Extension to a generalized random process immediately raises nontrivial questions about the definition of a suitable" phase state," so that given the state, future behavior does not depend on past behavior. Attempts to translate the Markov property to random functions of multi-dimensional "time," where the role of "past" and "future" are taken by arbitrary complementary regions in an appro priate multi-dimensional time domain have, until comparatively recently, been carried out only in the framework of isolated examples. How the Markov property should be formulated for generalized random functions of several variables is the principal question in this book. We think that it has been substantially answered by recent results establishing the Markov property for a whole collection of different classes of random functions. These results are interesting for their applications as well as for the theory. In establishing them, we found it useful to introduce a general probability model which we have called a random field. In this book we investigate random fields on continuous time domains. Contents CHAPTER 1 General Facts About Probability Distributions ยง1.


Adaptive Bayesian Nonparametric Smoothing with Markov Random Fields and Shrinkage Priors

Adaptive Bayesian Nonparametric Smoothing with Markov Random Fields and Shrinkage Priors

Author: James Robert Faulkner

Publisher:

Published: 2019

Total Pages: 164

ISBN-13:

DOWNLOAD EBOOK

The need to estimate unknown functions or surfaces arises in many disciplines in science and there are many statistical methods available to do this. Our interest lies in using Bayesian nonparametric approaches to estimate unknown functions. One such approach to nonparametric estimation is based on the Gaussian Markov random field priors. This class of computationally efficient and flexible methods is widely used in applications. There is frequently the need to estimate functions with change points, discontinuities, or abrupt changes, or functions with varying levels of smoothness. Gaussian Markov random fields have limited ability to accurately capture such features. We develop a locally adaptive version of Markov random fields that uses shrinkage priors on the order-k increments of the discretized function and has the flexibility to accommodate a large class of functional behaviors. We show that the horseshoe prior results in superior performance in comparison to other shrinkage priors. The horseshoe prior induces sparsity in the increments, which provides good smoothing properties, and at the same time the heavy tails of the prior allow for jumps and discontinuities in the field. We first apply the method to some standard settings where we use simulated data to compare to other methods and then apply the models to two benchmark data examples frequently used to test nonparametric methods. We use Hamiltonian Monte Carlo to approximate the posterior distribution of model parameters because this method provides superior performance in the presence of the high dimensionality and strong parameter correlations exhibited by our models. We then extend the method to the estimation of effective population sizes using the coalescent process and genetic sequence data. For that application, we develop a custom Markov chain Monte Carlo sampler based on a combination of elliptical slice sampling and Gibbs sampling. We test the method using simulated data and then use it to reconstruct past changes in genetic diversity of human hepatitis C virus in Egypt and to estimate population size changes of ancient and modern steppe bison. Finally, we extend the method for use in the spatial setting, where we apply the method to disease mapping and to the estimation of the intensity of an inhomogeneous spatial point process. Overall, we find that this method is flexible enough to accommodate a variety of data generating models and offers the adaptive properties and computational tractability that make it a useful addition to the Bayesian nonparametric toolbox.