Oil & Gas Produced Water Management

Oil & Gas Produced Water Management

Author: Eric M.V. Hoek

Publisher: Morgan & Claypool Publishers

Published: 2021-05-10

Total Pages: 93

ISBN-13: 1681738287

DOWNLOAD EBOOK

This book outlines the technologies and techniques used in the oil & gas industry’s shift from treating produced water as a “waste stream” to an integrated water management approach. Produced water is formed underground and brought to the surface during oil & gas (O&G) production and exploration and production (E&P) operations. It is usually a complex mixture of inorganics and organics and contributes to the largest volume waste stream of O&G and E&P operations. Traditionally, produced water has been considered a waste and conventional management strategies include disposal (typically by injection into depleted wells or permitted disposal wells), recycling (direct reuse within the E&P operation) and reuse (treatment and reuse offsite for food crop irrigation, livestock watering or industrial use). The O&G industry is going through a paradigm shift where scarcity of water, economics of water management, declining oil costs, and increasing focus on environmental and ecological stewardship are shifting the focus toward integrated water management in E&P operations. Water is no longer a problem to be delegated to a third-party disposal or treatment vendor, but is becoming a cornerstone of O&G production. This is a summary of produced water characteristics, regulations and management options, produced water treatment fundamentals, and a detailed discussion of process equipment and advantages/disadvantages of currently available treatment processes. It provides a guide for selecting appropriate technologies for the desired application and points toward the optimization of current technologies and the use of combined treatment processes to meet reuse and discharge limits and critically, more stringent environmental regulations.


Produced Water

Produced Water

Author: James P. Ray

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 606

ISBN-13: 1461529026

DOWNLOAD EBOOK

This book represents the proceedings of the first major international meeting dedi cated to discuss environmental aspects of produced water. The 1992 International Pro duced Water Symposium was held at the Catamaran Hotel, San Diego, California, USA, on February 4-7, 1992. The objectives of the conference were to provide a forum where scientists, regulators, industry, academia, and the enviromental community could gather to hear and discuss the latest information related to the environmental considerations of produced water discharges. It was also an objective to provide a forum for the peer review and international publication of the symposium papers so that they would have wide availability to all parties interested in produced water environmental issues. Produced water is the largest volume waste stream from oil and gas production activities. Onshore, well over 90% is reinjected to subsurface formations. Offshore, and in the coastal zone, most produced water is discharged to the ocean. Over the past several years there has been increasing concern from regulators and the environmental commu nity. There has been a quest for more information on the composition, treatment systems and chemicals, discharge characteristics, disposal options, and fate and effects of the produced water. As so often happens, much of this information exists in the forms of reports and internal research papers. This symposium and publication was intended to make this information available, both for open discussion at the conference, and for peer review before publication.


Produced Water

Produced Water

Author: Kenneth Lee

Publisher: Springer Science & Business Media

Published: 2011-09-18

Total Pages: 601

ISBN-13: 1461400465

DOWNLOAD EBOOK

A state-of-the-art review of scientific knowledge on the environmental risk of ocean discharge of produced water and advances in mitigation technologies. In offshore oil and gas operations, produced water (the water produced with oil or gas from a well) accounts for the largest waste stream (in terms of volume discharged). Its discharge is continuous during oil and gas production and typically increases in volume over the lifetime of an offshore production platform. Produced water discharge as waste into the ocean has become an environmental concern because of its potential contaminant content. Environmental risk assessments of ocean discharge of produced water have yielded different results. For example, several laboratory and field studies have shown that significant acute toxic effects cannot be detected beyond the "point of discharge" due to rapid dilution in the receiving waters. However, there is some preliminary evidence of chronic sub-lethal impacts in biota associated with the discharge of produced water from oil and gas fields within the North Sea. As the composition and concentration of potential produced water contaminants may vary from one geologic formation to another, this conference also highlights the results of recent studies in Atlantic Canada.


Management and Effects of Coalbed Methane Produced Water in the Western United States

Management and Effects of Coalbed Methane Produced Water in the Western United States

Author: National Research Council

Publisher: National Academies Press

Published: 2010-10-15

Total Pages: 239

ISBN-13: 0309162939

DOWNLOAD EBOOK

In some coalbeds, naturally occurring water pressure holds methane-the main component of natural gas-fixed to coal surfaces and within the coal. In a coalbed methane (CBM) well, pumping water from the coalbeds lowers this pressure, facilitating the release of methane from the coal for extraction and use as an energy source. Water pumped from coalbeds during this process-CBM 'produced water'-is managed through some combination of treatment, disposal, storage, or use, subject to compliance with federal and state regulations. CBM produced water management can be challenging for regulatory agencies, CBM well operators, water treatment companies, policy makers, landowners, and the public because of differences in the quality and quantity of produced water; available infrastructure; costs to treat, store, and transport produced water; and states' legal consideration of water and produced water. Some states consider produced water as waste, whereas others consider it a beneficial byproduct of methane production. Thus, although current technologies allow CBM produced water to be treated to any desired water quality, the majority of CBM produced water is presently being disposed of at least cost rather than put to beneficial use. This book specifically examines the Powder River, San Juan, Raton, Piceance, and Uinta CBM basins in the states of Montana, Wyoming, Colorado, New Mexico, and Utah. The conclusions and recommendations identify gaps in data and information, potential beneficial uses of CBM produced water and associated costs, and challenges in the existing regulatory framework.


Sustainable Desalination and Water Reuse

Sustainable Desalination and Water Reuse

Author: Eric M.V. Hoek

Publisher: Morgan & Claypool Publishers

Published: 2021-06-18

Total Pages: 206

ISBN-13: 1636391907

DOWNLOAD EBOOK

Over the past half century, reverse osmosis (RO) has grown from a nascent niche technology into the most versatile and effective desalination and advanced water treatment technology available. However, there remain certain challenges for improving the cost-effectiveness and sustainability of RO desalination plants in various applications. In low-pressure RO applications, both capital (CAPEX) and operating (OPEX) costs are largely influenced by product water recovery, which is typically limited by mineral scale formation. In seawater applications, recovery tends to be limited by the salinity limits on brine discharge and cost is dominated by energy demand. The combination of water scarcity and sustainability imperatives, in many locations, is driving system designs towards minimal and zero liquid discharge (M/ZLD) for inland brackish water, municipal and industrial wastewaters, and even seawater desalination. Herein, we review the basic principles of RO processes, the state-of-the-art for RO membranes, modules and system designs as well as methods for concentrating and treating brines to achieve MLD/ZLD, resource recovery and renewable energy powered desalination systems. Throughout, we provide examples of installations employing conventional and some novel approaches towards high recovery RO in a range of applications from brackish groundwater desalination to oil and gas produced water treatment and seawater desalination.


Waste Management: Concepts, Methodologies, Tools, and Applications

Waste Management: Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2019-12-06

Total Pages: 1680

ISBN-13: 1799812111

DOWNLOAD EBOOK

As the world’s population continues to grow and economic conditions continue to improve, more solid and liquid waste is being generated by society. Improper disposal methods can not only lead to harmful environmental impacts but can also negatively affect human health. To prevent further harm to the world’s ecosystems, there is a dire need for sustainable waste management practices that will safeguard the environment for future generations. Waste Management: Concepts, Methodologies, Tools, and Applications is a vital reference source that examines the management of different types of wastes and provides relevant theoretical frameworks about new waste management technologies for the control of air, water, and soil pollution. Highlighting a range of topics such as contaminant removal, landfill treatment, and recycling, this multi-volume book is ideally designed for environmental engineers, waste authorities, solid waste management companies, landfill operators, legislators, environmentalists, policymakers, government officials, academicians, researchers, and students.


Constructed Wetlands for Industrial Wastewater Treatment

Constructed Wetlands for Industrial Wastewater Treatment

Author: Alexandros I. Stefanakis

Publisher: John Wiley & Sons

Published: 2018-08-20

Total Pages: 612

ISBN-13: 1119268346

DOWNLOAD EBOOK

A groundbreaking book on the application of the economic and environmentally effective treatment of industrial wastewater Constructed Wetlands for Industrial Wastewater Treatment contains a review of the state-of-the-art applications of constructed wetland technology for industrial wastewater treatment. This green technology offers many economic, environmental, and societal advantages. The text examines the many unique uses and the effectiveness of constructed wetlands for the treatment of complex and heavily polluted wastewater from various industrial sources. The editor — a noted expert in the field — and the international author team (93 authors from 22 countries) present vivid examples of the current state of constructed wetlands in the industrial sector. The text is filled with international case studies and research outcomes and covers a wide range of applications of these sustainable systems including facilities such as the oil and gas industry, agro-industries, paper mills, pharmaceutical industry, textile industry, winery, brewery, sludge treatment and much more. The book reviews the many system setups, examines the different removal and/or transformational processes of the various pollutants and explores the overall effectiveness of this burgeoning technology. This important resource: Offers the first, groundbreaking text on constructed wetlands use for industrial wastewater treatment Provides a single reference with summarized information and the state-of-the-art knowledge of the use of Constructed Wetlands in the industrial sector through case studies, research outcomes and review chapters Covers a range of industrial applications such as hydrocarbons/oil and gas industry, food and beverage, wood and leather processing, agro-industries, pharmaceuticals and many others Includes best practices drawn by a collection of international case studies Presents the latest technological developments in the industry Written for civil and environmental engineers, sustainable wastewater/water managers in industry and government, Constructed Wetlands for Industrial Wastewater Treatment is the first book to offer a comprehensive review of the set-up and effectiveness of constructed wetlands for a wide range of industrial applications to highlight the diverse economic and environmental benefits this technology brings to the industry.


Wetland Technology

Wetland Technology

Author: Guenter Langergraber

Publisher: IWA Publishing

Published: 2019-10-15

Total Pages: 0

ISBN-13: 9781789060164

DOWNLOAD EBOOK

Water quality standards across the world are being re-written to promote healthier ecosystems, ensure safe potable water sources, increased biodiversity, and enhanced ecological functions. Treatment wetlands are used for treating a variety of pollutant waters, including municipal wastewater, agricultural and urban runoff, industrial effluents, and combined sewer overflows, among others. Treatment wetlands are particularly well-suited for sustainable water management because they can cope with variable influent loads, can be constructed of local materials, have low operations and maintenance requirements compared to other treatment technologies, and they can provide additional ecosystem services. The technology has been successfully implemented in both developed and developing countries. The first IWA Scientific and Technical Report (STR) on Wetland Technology was published in 2000. With the exponential development of the technology since then, the generation of a new STR was facilitated by the IWA Task Group on Mainstreaming Wetland Technology. This STR was conceptualized and written by leading experts in the field. The new report presents the latest technology applications within an innovative planning framework of multi-purpose wetland design. It also includes practical design information collected from over twenty years of experience from practitioners and academics, covering experiments at laboratory and pilot-scale up to full-scale applications. Scientific and Technical Report No.27