This book offers a timely review of wave energy and its conversion mechanisms. Written having in mind current needs of advanced undergraduates engineering students, it covers the whole process of energy generation, from waves to electricity, in a systematic and comprehensive manner. Upon a general introduction to the field of wave energy, it presents analytical calculation methods for estimating wave energy potential in any given location. Further, it covers power-take off (PTOs), describing their mechanical and electrical aspects in detail, and control systems and algorithms. The book includes chapters written by active researchers with vast experience in their respective filed of specialization. It combines basic aspects with cutting-edge research and methods, and selected case studies. The book offers systematic and practice-oriented knowledge to students, researchers, and professionals in the wave energy sector. Chapters 17 of this book is available open access under a CC BY 4.0 license at link.springer.com
Understand the absorption of energy from ocean waves by means of oscillating systems with this useful new edition. Essential for engineers, researchers, and graduate students, and an indispensable tool for those who work in this field.
Predicting Future Oceans: Sustainability of Ocean and Human Systems Amidst Global Environmental Change provides a synthesis of our knowledge of the future state of the oceans. The editors undertake the challenge of integrating diverse perspectives—from oceanography to anthropology—to exhibit the changes in ecological conditions and their socioeconomic implications. Each contributing author provides a novel perspective, with the book as a whole collating scholarly understandings of future oceans and coastal communities across the world. The diverse perspectives, syntheses and state-of-the-art natural and social sciences contributions are led by past and current research fellows and principal investigators of the Nereus Program network. This includes members at 17 leading research institutes, addressing themes such as oceanography, biodiversity, fisheries, mariculture production, economics, pollution, public health and marine policy. This book is a comprehensive resource for senior undergraduate and postgraduate readers studying social and natural science, as well as practitioners working in the field of natural resources management and marine conservation. - Provides a synthesis of our knowledge on the future state of the oceans - Includes recommendations on how to move forwards - Highlights key social aspects linked to ocean ecosystems, including health, equity and sovereignty
The Arctic and its surrounding marginal seas are considered some of the most sensitive elements of the global environment, which may respond rapidly to climate change. However, due to various reasons, our knowledge of the processes which drive the Arctic system today and in the past is still relatively sparse. Based on a multidisciplinary approach, German and Russian scientists describe in this book the natural paleorecords and modern data which were collected over the past 6 years. These marine and terrestrial datasets provide important new insights into the causes, impacts, and feedback mechanisms of this extreme Arctic environment.
Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.