Inflammatory Bowel Disease (IBD) is a chronic debilitating disorder that occurs at any age and in populations around the world. Its pathogenesis is believed to involve a combination of genetic susceptibility, immune and external environmental factors, including the gut microbiota. Changing factors such as diet and the human gut microbiota may thus be a viable alternative to suppressing the innate and adaptive immune responses. The book at hand starts with a summary of the current understanding of the epidemiology and biologic underpinnings that manifest as IBD. Next, the gut microbiota, its function, and how it may interact with nutritional status in perpetuating IBD are looked at, followed by discussions on the potential for manipulation of the gut microbiota through the use of prebiotics, probiotics, antibiotics, and fecal transplantation. Chapters on the current role of and future prospects for nutritional interventions in the management of IBD complete the topics presented.
Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion reviews and presents new hypotheses and conclusions on the effects of different bioactive components of probiotics, prebiotics, and synbiotics to prevent disease and improve the health of various populations. Experts define and support the actions of bacteria; bacteria modified bioflavonoids and prebiotic fibrous materials and vegetable compounds. A major emphasis is placed on the health-promoting activities and bioactive components of probiotic bacteria. - Offers a novel focus on synbiotics, carefully designed prebiotics probiotics combinations to help design functional food and nutraceutical products - Discusses how prebiotics and probiotics are complementary and can be incorporated into food products and used as alternative medicines - Defines the variety of applications of probiotics in health and disease resistance and provides key insights into how gut flora are modified by specific food materials - Includes valuable information on how prebiotics are important sources of micro-and macronutrients that modify body functions
This is the first book specifically devoted to butyrate and its biological functions in the health of humans and animals. It is the result of the collective efforts of a group of international experts working on different aspects of butyrate. It has been recognised for a long time that the consumption of dietary fibres has positive metabolic health effects. These effects are directly associated with short-chain fatty acids (SCFAs), particularly butyrate, formed by the microbial degradation of dietary fibres in the digestive tract. Butyrate-induced biological effects provide examples of epigenomic regulation induced by nutrient elements and provide a basis for understanding the full range of the biological roles and molecular mechanisms that butyrate may play in cell growth, proliferation and energy metabolism. This book is a comprehensive collection of highly innovative research ideas, strategies, and crucial points related to butyrate and its biological functions. With a detailed introduction of recent advances in different but intriguing research fields, this book is a great reference for biochemists, molecular biologists, biomedical scientists and clinical researchers. This book is also a great reference for graduate students working in the related fields of biomedical sciences.
This is the first comprehensive volume to look at the importance of short-chain fatty acids in digestion, the function of the large intestine and their role in human health. Short-chain fatty acids are the major product of bacterial fermentation of dietary carbohydrates in the human and animal large intestine. They represent the major end products of digestive processes occurring in the caecum and large intestine. As such, they form an important dietary component and it is increasingly recognised that they may have a significant role in protecting against large bowel cancer and in metabolism. Prepared by an international team of contributors who are at the forefront of this area of research, this volume will be an essential source of reference for gastroenterologists, nutritionists and others active in this area.
Examining the enormous potential of microbiome manipulation to improve health Associations between the composition of the intestinal microbiome and many human diseases, including inflammatory bowel disease, cardiovascular disease, metabolic disorders, and cancer, have been elegantly described in the past decade. Now, whole-genome sequencing, bioinformatics, and precision gene-editing techniques are being combined with centuries-old therapies, such as fecal microbiota transplantation, to translate current research into new diagnostics and therapeutics to treat complex diseases. Bugs as Drugs provides a much-needed overview of microbes in therapies and will serve as an excellent resource for scientists and clinicians as they carry out research and clinical studies on investigating the roles the microbiota plays in health and disease. In Bugs as Drugs, editors Robert A. Britton and Patrice D. Cani have assembled a fascinating collection of reviews that chart the history, current efforts, and future prospects of using microorganisms to fight disease and improve health. Sections cover traditional uses of probiotics, next-generation microbial therapeutics, controlling infectious diseases, and indirect strategies for manipulating the host microbiome. Topics presented include: How well-established probiotics support and improve host health by improving the composition of the intestinal microbiota of the host and by modulating the host immune response. The use of gene editing and recombinant DNA techniques to create tailored probiotics and to characterize next-generation beneficial microbes. For example, engineering that improves the anti-inflammatory profile of probiotics can reduce the number of colonic polyps formed, and lactobacilli can be transformed into targeted delivery systems carrying therapeutic proteins or bioengineered bacteriophage. The association of specific microbiota composition with colorectal cancer, liver diseases, osteoporosis, and inflammatory bowel disease. The gut microbiota has been proposed to serve as an organ involved in regulation of inflammation, immune function, and energy homeostasis. Fecal microbiota transplantation as a promising treatment for numerous diseases beyond C. difficile infection. Practical considerations for using fecal microbiota transplantation are provided, while it is acknowledged that more high-quality evidence is needed to ascertain the importance of strain specificity in positive treatment outcomes. Because systems biology approaches and synthetic engineering of microbes are now high-throughput and cost-effective, a much wider range of therapeutic possibilities can be explored and vetted. If you are looking for online access to the latest clinical microbiology content, please visit www.wiley.com/learn/clinmicronow.
As the number of patients with colitis-associated cancer (CAC) is on the increase, the purpose of this book is to review the latest topics concerning management of the disease. In recent years, the diagnostic power of endoscopy and molecular pathology has also grown tremendously, as a result of which they now have a far greater influence on the treatment of CAC. At the moment, appropriate monitoring programs for ulcerative colitis and Crohn’s disease remain uncertain. At the same time, the latest findings on DNA methylation and microRNAs hold the promise of making revolutionary changes in these areas. Moreover, recent drug advances in the treatment of inflammatory bowel diseases have changed surgical indications. On the other hand, the indication of mucosectomy on colorectal cancer in ulcerative colitis and prophylactic abdominoperineal resection for Crohn’s disease remain controversial. This book provides the latest information on the remaining issues of CAC from the point of view of expert surgeons.
The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography
The term “immunobiotics” has been proposed to define microbial strains able to beneficially regulate the mucosal immune system. Research in immunobiotics has significantly evolved as researchers employed cutting-edge technologies to investigate the complex interactions of these beneficial microorganisms with the immune system. During the last decade, our understanding of immunobiotics-host interaction was profoundly transformed by the discovery of microbial molecules and host receptors involved in the modulation of gut associated immune system, as well as the systemic and distant mucosal immune systems. In recent years, there has been a substantial increase in the number of reports describing the beneficial effects of immunobiotics in diseases such as intestinal and respiratory infections, allergy, inflammatory bowel disease, obesity, immunosuppression, and several other immune-mediated conditions. Evidence is also emerging of immunobiotics related molecules with immunomodulatory functions leading to the production of pharmabiotics, which may positively influence human or animal health. Therefore, research in immunobiotics continue to contribute not only to food but also medical and pharmaceutical fields. The compilation of research articles included in this ebook should help reader to have an overview of the recent advances in immunobiotics.
In Probiotics, Prebiotics and Synbiotics: Technological Advancements Towards Safety and Industrial Applications, a team of distinguished researchers delivers an insightful exploration of various aspects of functional foods. The book includes information about critical facets of the production of these beneficial compounds, recent technological developments in the field, and their present and future commercial potential. The authors describe their mechanisms of action and their applications in several sectors. Probiotics, Prebiotics and Synbiotics is divided into five parts. A general introduction about these substances begins the book and is followed by discussions of common probiotics, prebiotics, and synbiotics. Finally, a treatment of safety issues and regulatory claims, as well as their market potential, rounds out the resource. Perfect for researchers, industry practitioners, and students working in or studying food processing and food microbiology, Probiotics, Prebiotics and Synbiotics is also an invaluable resource for professionals working in the field of food biotechnology.