Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations

Author: Mitsuhiro T. Nakao

Publisher: Springer Nature

Published: 2019-11-11

Total Pages: 469

ISBN-13: 9811376697

DOWNLOAD EBOOK

In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a “theoretical” proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form -∆u=f(x,u,∇u) with Dirichlet boundary conditions. Here, by “verified computation” is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors’ methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.


Computer Algebra in Scientific Computing

Computer Algebra in Scientific Computing

Author: François Boulier

Publisher: Springer Nature

Published: 2022-08-10

Total Pages: 412

ISBN-13: 303114788X

DOWNLOAD EBOOK

This book constitutes the proceedings of the 24th International Workshop on Computer Algebra in Scientific Computing, CASC 2022, which took place in Gebze, Turkey, in August 2022. The 20 full papers included in this book were carefully reviewed and selected from 32 submissions. They focus on the theory of symbolic computation and its implementation in computer algebra systems as well as all other areas of scientific computing with regard to their benefit from or use of computer algebra methods and software.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Applied Parallel and Scientific Computing

Applied Parallel and Scientific Computing

Author: Pekka Manninen

Publisher: Springer

Published: 2013-02-12

Total Pages: 569

ISBN-13: 3642368034

DOWNLOAD EBOOK

This volume constitutes the refereed proceedings of the 11th International Conference on Applied Parallel and Scientific Computing, PARA 2012, held in Helsinki, Finland, in June 2012. The 35 revised full papers presented were selected from numerous submissions and are organized in five technical sessions covering the topics of advances in HPC applications, parallel algorithms, performance analyses and optimization, application of parallel computing in industry and engineering, and HPC interval methods. In addition, three of the topical minisymposia are described by a corresponding overview article on the minisymposia topic. In order to cover the state-of-the-art of the field, at the end of the book a set of abstracts describe some of the conference talks not elaborated into full articles.


Numerical Validation in Current Hardware Architectures

Numerical Validation in Current Hardware Architectures

Author: Annie A.M. Cuyt

Publisher: Springer Science & Business Media

Published: 2009-04-24

Total Pages: 272

ISBN-13: 3642015905

DOWNLOAD EBOOK

The major emphasis of the Dagstuhl Seminar on “Numerical Validation in C- rent Hardware Architectures” lay on numerical validation in current hardware architecturesand softwareenvironments. The generalidea wasto bring together experts who are concerned with computer arithmetic in systems with actual processor architectures and scientists who develop, use, and need techniques from veri?ed computation in their applications. Topics of the seminar therefore included: – The ongoing revision of the IEEE 754/854 standard for ?oating-point ari- metic – Feasible ways to implement multiple precision (multiword) arithmetic and to compute the actual precision at run-time according to the needs of input data – The achievement of a similar behavior of ?xed-point, ?oating-point and - terval arithmetic across language compliant implementations – The design of robust and e?cient numerical programsportable from diverse computers to those that adhere to the IEEE standard – The development and propagation of validated special-purpose software in di?erent application areas – Error analysis in several contexts – Certi?cation of numerical programs, veri?cation and validation assessment Computer arithmetic plays an important role at the hardware and software level, when microprocessors, embedded systems, or grids are designed. The re- ability of numerical softwarestrongly depends on the compliance with the cor- sponding ?oating-point norms. Standard CISC processors follow the 1985 IEEE norm 754, which is currently under revision, but the new highly performing CELL processor is not fully IEEE compliant.


Numerical Continuation Methods

Numerical Continuation Methods

Author: Eugene L. Allgower

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 402

ISBN-13: 3642612571

DOWNLOAD EBOOK

Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.


Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Author: Uri M. Ascher

Publisher: SIAM

Published: 1994-12-01

Total Pages: 620

ISBN-13: 9781611971231

DOWNLOAD EBOOK

This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.


Partial Differential Equations and Boundary-Value Problems with Applications

Partial Differential Equations and Boundary-Value Problems with Applications

Author: Mark A. Pinsky

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 545

ISBN-13: 0821868896

DOWNLOAD EBOOK

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.